Inspiratory Contribution of Pressure Support-ventilated Patients in Different PMI Conditions

NCT ID: NCT05970393

Last Updated: 2024-07-25

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

22 participants

Study Classification

INTERVENTIONAL

Study Start Date

2023-02-07

Study Completion Date

2024-01-01

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Pressure support ventilation (PSV) is an assisted mechanical ventilation mode that provides synchronous inspiratory support for patients with spontaneous breathing. PSV divides the work involved in producing ventilation between the ventilator and the patients. The patient inspiratory effort needs close monitoring to avoid inappropriate assistance and maintain favorable patient-ventilator interaction during PSV. Esophageal pressure (Pes)-derived parameters are regarded as golden indicators of inspiratory effort. Based on this precondition, the fraction of PTP generated by the patient during PSV (PTP ratio) can evaluate the inspiratory contribution proportion of ventilated patients with spontaneous breathing. Inspiratory muscle pressure index (PMI) was confirmed to be associated with inspiratory effort and can effectively predict low/high effort. The study tries to explore the relationship between PMI and PTP ratio and find the optimal cut-off value of PMI to predict different PTP ratios. Second, investigators want to verify the safety and validity of PMI-guided PS settings for pressure-support ventilated patients.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Pressure support ventilation (PSV) is an assisted mechanical ventilation mode that provides synchronous inspiratory support for patients with spontaneous breathing. PSV divides the work involved in producing ventilation between the ventilator and the patients. The level of support should be adjusted to the patient's inspiratory effort for assisted ventilation to be successful. Despite PSV being commonly used in mechanical ventilation therapy, the PS setting is not precisely regulated. Clinicians and respiratory therapists typically use tidal volume/predicted body weight (VT/PBW, 6-8 ml/Kg) and respiratory rate (RR, 20-30 breaths/min) to modify ventilator settings. Because pressure support level is not dynamically modulated based on the inspiratory effort of ventilated patients in time, there is always the risk of excessive or insufficient assistance. Excessive assistance and low inspiratory effort may result in diaphragm disuse atrophy and ventilator-induced lung injury (VILI). Inadequate assistance and high inspiratory effort may result in diagram stretched injury and patient-inflicted lung injury (PSILI). Both situations cause strain and stress on the lung and diaphragm, which may influence the ICU clinical outcomes.

The patient inspiratory effort needs close monitoring to avoid inappropriate assistance and maintain favorable patient-ventilator interaction during PSV. Esophageal pressure (Pes)-derived parameters are regarded as golden indicators of inspiratory effort, including respiratory muscle pressure (Pmus), esophageal pressure-time product (PTPes), etc. Based on this precondition, the fraction of PTP generated by the patient during PSV (PTP ratio) can evaluate the inspiratory contribution proportion of ventilated patients with spontaneous breathing. Pmus index (PMI) is defined as the change in airway pressure (Paw) during the end-inspiratory occlusion and represents the patient's current elastic workload. This variable was confirmed to be associated with inspiratory effort and can effectively predict low/high effort. More importantly, it is non-invasive and available at the bedside because respiratory hold operations are integrated into most ventilators. However, the relationship between PMI and the inspiratory contribution proportion of ventilated patients is not clear, and how to guide PS settings through PMI needs more research.

Our study aims to explore the inspiratory contribution of pressure-support ventilated patients in different PMI conditions. In other words, investigators try to explore the relationship between PMI and PTP ratio and find the optimal cut-off value of PMI to predict different PTP ratios. Second, investigators want to verify the safety and validity of PMI-guided PS settings for pressure-support ventilated patients.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Mechanical Ventilation

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NA

Intervention Model

SINGLE_GROUP

Primary Study Purpose

SUPPORTIVE_CARE

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Experimental

PMI represents the difference between plateau airway pressure and peak airway pressure (plateau - peak) during an end-inspiratory airway occlusion.

Group Type EXPERIMENTAL

pressure support level tatrition

Intervention Type PROCEDURE

Baseline ventilators were set by the principle of keeping VT/PBW at 6-8ml/kg and RR at 20-30 breaths/min and the decision of the responsible ICU physician. After then the fraction of inspired oxygen (FiO2), positive expiratory end pressure (PEEP), trigger sensitivity, and cycle-off criteria remain unchanged. Upward and downward PS level adjustments were performed from the baseline PS level at a 1cm H2O interval. Every PS level was maintained for 20 minutes and then three end-inspiratory holdings (2-3seconds) and three end-expiratory holdings were performed. PMI mean value was measured and calculated at every PS level. To avoid additional injury to the lung and diaphragm, the airway peak pressure (Ppeak) was limited to 30cmH2O, and titrating PS was stopped until PMI was less than -1cmH2O and more than 3cmH2O.The inspiratory effort is measured as the pressure generated by inspiratory muscles using esophageal pressure monitoring.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

pressure support level tatrition

Baseline ventilators were set by the principle of keeping VT/PBW at 6-8ml/kg and RR at 20-30 breaths/min and the decision of the responsible ICU physician. After then the fraction of inspired oxygen (FiO2), positive expiratory end pressure (PEEP), trigger sensitivity, and cycle-off criteria remain unchanged. Upward and downward PS level adjustments were performed from the baseline PS level at a 1cm H2O interval. Every PS level was maintained for 20 minutes and then three end-inspiratory holdings (2-3seconds) and three end-expiratory holdings were performed. PMI mean value was measured and calculated at every PS level. To avoid additional injury to the lung and diaphragm, the airway peak pressure (Ppeak) was limited to 30cmH2O, and titrating PS was stopped until PMI was less than -1cmH2O and more than 3cmH2O.The inspiratory effort is measured as the pressure generated by inspiratory muscles using esophageal pressure monitoring.

Intervention Type PROCEDURE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

Adult acute respiratory failure patients undergoing mechanical ventilation were screened daily and enrolled 24 hours after switching to PSV mode.

Exclusion Criteria

1. age younger than 18 years old and more than 80 years old
2. chronic occlusive pulmonary diseases
3. known pregnancy and parturient
4. gastric, esophageal, and diaphragm surgery
5. barotrauma
6. neuromuscular diseases
7. intracranial hypertension and brain stem injury
8. consciousness level decreased (SAS less than 3 scores)
9. Anticipating withdrawal of life support and/or shift to palliation as the goal of care.
Minimum Eligible Age

18 Years

Maximum Eligible Age

80 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Jian-Xin Zhou

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Jian-Xin Zhou

Professor

Responsibility Role SPONSOR_INVESTIGATOR

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Beijing Tiantan Hospital

Beijing, , China

Site Status

Countries

Review the countries where the study has at least one active or historical site.

China

References

Explore related publications, articles, or registry entries linked to this study.

Gao R, Zhou JX, Yang YL, Xu SS, Zhou YM, Zhang L, Miao MY. Use of pressure muscle index to predict the contribution of patient's inspiratory effort during pressure support ventilation: a prospective physiological study. Front Med (Lausanne). 2024 Apr 26;11:1390878. doi: 10.3389/fmed.2024.1390878. eCollection 2024.

Reference Type DERIVED
PMID: 38737762 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

KY2023-001-02

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Variable Pressure Support Trial
NCT01769053 TERMINATED NA