Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
10 participants
INTERVENTIONAL
2022-12-01
2023-10-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Neural Pressure Support, Synchrony and Respiratory Muscle Unloading
NCT05670093
Sigh in Pressure Support Ventilation to Detect Respiratory System Compliance and Lung Recruitability
NCT07172061
Personalized Noninvasive Support in Acute Hypoxemic Respiratory Failure
NCT06202144
Effect of Pressure Support Ventilation and Neurally Adjusted Ventilatory Assist (NAVA) in Chronic Obstructive Pulmonary Disease (COPD) Patients
NCT00568100
Evaluation of Different Continuous Positive Airway Pressure (CPAP) Systems in Patients With Acute Respiratory Failure
NCT00876473
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Pressure support ventilation (PSV) is one of the most widely used mechanical ventilation modes for liberation from IMV.6 PSV is a partial ventilatory mode: the ventilator and the patient co-operate to generate the inspiratory and expiratory pressures, flows, and volumes. During conventional PSV, the initiation of the breath is triggered by a reduction in expiratory pressure or a drop in expiratory flow.7 The termination of the breath occurs when the inspiratory flow falls to a predetermined fraction of the peak inspiratory flow.8
The main goal of mechanical ventilation is to help restore gas exchange and reduce the work of breathing (WOB) by assisting respiratory muscle activity.9 Knowing the determinants of WOB is essential for the effective use of mechanical ventilation and also to assess patient readiness for weaning. To reduce WOB, PSV needs to be synchronous and smooth interaction should happen between the ventilator and the respiratory muscles.10
Ideally, the ventilator trigger and cycling should coincide with the beginning and end of the patient's inspiratory effort.11 However, patient-ventilator asynchrony is common during PSV,12,13 thereby contributing to an increased work of breathing and an increased duration of mechanical ventilation.14
An important objective of assisted or patient-triggered mechanical ventilation is to avoid ventilator-induced diaphragmatic dysfunction by allowing the patient to generate spontaneous efforts.15 A second objective is to reduce the patient's work of breathing by delivering a sufficient level of ventilatory support.16 Finally, intuition suggests that a good match between patient respiratory efforts and ventilator breaths optimizes patient comfort and reduces work of breathing.17 Patient-ventilator asynchrony can be defined as a mismatch between the patient and ventilator inspiratory and expiratory times.18 Although inspiratory and expiratory delays are almost inevitable with most ventilatory modes, several patterns of major asynchrony exist and can be easily detected by clinicians.14
The diaphragmatic electrical activity (EAdi) can be used to optimize the ventilator settings and improve the matching between patient and ventilator. The EAdi signal is a surrogate of respiratory brain stem output and can be recorded using specialized nasogastric tubes equipped with electrodes.19
The Neural Pressure Support (NPS) is a newer ventilation mode that includes neural trigger and termination of inspiration based on the electrical activity of the diaphragm (Edi). NPS delivers a constant airway pressure support independent of the patient's efforts.20
The NPS may be particularly beneficial for ARF patients with lower respiratory compliance. Indeed, in this cohort, during standard PSV, expiratory cycling may be hampered by several asynchronies.21 However, to our knowledge, the effectiveness of NPS in reducing asynchronies and respiratory work has not been tested and compared with standard PSV in patients with low respiratory system compliance.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
CROSSOVER
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
NPS
To evaluate WOB and asynchronies in patients with low respiratory system compliance undergoing Neural Pressure Support Ventilation.
Neural Pressure Support
To evaluate WOB and asynchronies in patients with low respiratory system compliance undergoing either PSV and NPS.
Pressure Support Ventilation
To evaluate WOB and asynchronies in patients with low respiratory system compliance undergoing either PSV and NPS.
PSV
To evaluate WOB and asynchronies in patients with low respiratory system compliance undergoing Pressure Support Ventilation.
Neural Pressure Support
To evaluate WOB and asynchronies in patients with low respiratory system compliance undergoing either PSV and NPS.
Pressure Support Ventilation
To evaluate WOB and asynchronies in patients with low respiratory system compliance undergoing either PSV and NPS.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Neural Pressure Support
To evaluate WOB and asynchronies in patients with low respiratory system compliance undergoing either PSV and NPS.
Pressure Support Ventilation
To evaluate WOB and asynchronies in patients with low respiratory system compliance undergoing either PSV and NPS.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Admission to Intensive Care Unit (ICU) for ARF
* Low compliance of the respiratory system (Crs ≤ 30 ml/cmH2O)
* Written informed consent obtained
Exclusion Criteria
* Increased risk of bleeding with nasogastric tube insertion, due to severe coagulation disorders and severe thrombocytopenia ( i.e., International Normalized Ratio (INR) \> 2 and platelets count \< 70.000/mm3)
* Severe hemodynamic instability (noradrenaline \> 0.3 μg/kg/min and/or use of vasopressin)
* Failure to obtain a stable EAdi signal
* Central nervous system or neuromuscular disorders
* Moribund status
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Policlinico Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Giacomo Grasselli
Full Professor
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Fondazione IRCCS Ca'Granda - Ospedale Maggiore Policlinico
Milan, , Italy
Countries
Review the countries where the study has at least one active or historical site.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Thompson BT, Chambers RC, Liu KD. Acute Respiratory Distress Syndrome. N Engl J Med. 2017 Aug 10;377(6):562-572. doi: 10.1056/NEJMra1608077. No abstract available.
Meyer NJ, Gattinoni L, Calfee CS. Acute respiratory distress syndrome. Lancet. 2021 Aug 14;398(10300):622-637. doi: 10.1016/S0140-6736(21)00439-6. Epub 2021 Jul 1.
Yoshida T, Fujino Y, Amato MB, Kavanagh BP. Fifty Years of Research in ARDS. Spontaneous Breathing during Mechanical Ventilation. Risks, Mechanisms, and Management. Am J Respir Crit Care Med. 2017 Apr 15;195(8):985-992. doi: 10.1164/rccm.201604-0748CP.
Pelosi P, Ball L, Barbas CSV, Bellomo R, Burns KEA, Einav S, Gattinoni L, Laffey JG, Marini JJ, Myatra SN, Schultz MJ, Teboul JL, Rocco PRM. Personalized mechanical ventilation in acute respiratory distress syndrome. Crit Care. 2021 Jul 16;25(1):250. doi: 10.1186/s13054-021-03686-3.
Fan E, Del Sorbo L, Goligher EC, Hodgson CL, Munshi L, Walkey AJ, Adhikari NKJ, Amato MBP, Branson R, Brower RG, Ferguson ND, Gajic O, Gattinoni L, Hess D, Mancebo J, Meade MO, McAuley DF, Pesenti A, Ranieri VM, Rubenfeld GD, Rubin E, Seckel M, Slutsky AS, Talmor D, Thompson BT, Wunsch H, Uleryk E, Brozek J, Brochard LJ; American Thoracic Society, European Society of Intensive Care Medicine, and Society of Critical Care Medicine. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2017 May 1;195(9):1253-1263. doi: 10.1164/rccm.201703-0548ST.
Hess DR. Ventilator waveforms and the physiology of pressure support ventilation. Respir Care. 2005 Feb;50(2):166-86; discussion 183-6.
Spahija J, de Marchie M, Albert M, Bellemare P, Delisle S, Beck J, Sinderby C. Patient-ventilator interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med. 2010 Feb;38(2):518-26. doi: 10.1097/CCM.0b013e3181cb0d7b.
MacIntyre NR. Clinically available new strategies for mechanical ventilatory support. Chest. 1993 Aug;104(2):560-5. doi: 10.1378/chest.104.2.560. No abstract available.
Nava S, Bruschi C, Rubini F, Palo A, Iotti G, Braschi A. Respiratory response and inspiratory effort during pressure support ventilation in COPD patients. Intensive Care Med. 1995 Nov;21(11):871-9. doi: 10.1007/BF01712327.
Leung P, Jubran A, Tobin MJ. Comparison of assisted ventilator modes on triggering, patient effort, and dyspnea. Am J Respir Crit Care Med. 1997 Jun;155(6):1940-8. doi: 10.1164/ajrccm.155.6.9196100.
Yamada Y, Du HL. Analysis of the mechanisms of expiratory asynchrony in pressure support ventilation: a mathematical approach. J Appl Physiol (1985). 2000 Jun;88(6):2143-50. doi: 10.1152/jappl.2000.88.6.2143.
Tokioka H, Tanaka T, Ishizu T, Fukushima T, Iwaki T, Nakamura Y, Kosogabe Y. The effect of breath termination criterion on breathing patterns and the work of breathing during pressure support ventilation. Anesth Analg. 2001 Jan;92(1):161-5. doi: 10.1097/00000539-200101000-00031.
Tassaux D, Gainnier M, Battisti A, Jolliet P. Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med. 2005 Nov 15;172(10):1283-9. doi: 10.1164/rccm.200407-880OC. Epub 2005 Aug 18.
Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006 Oct;32(10):1515-22. doi: 10.1007/s00134-006-0301-8. Epub 2006 Aug 1.
Vassilakopoulos T, Petrof BJ. Ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med. 2004 Feb 1;169(3):336-41. doi: 10.1164/rccm.200304-489CP. No abstract available.
Brochard L, Harf A, Lorino H, Lemaire F. Inspiratory pressure support prevents diaphragmatic fatigue during weaning from mechanical ventilation. Am Rev Respir Dis. 1989 Feb;139(2):513-21. doi: 10.1164/ajrccm/139.2.513.
Sassoon CS, Foster GT. Patient-ventilator asynchrony. Curr Opin Crit Care. 2001 Feb;7(1):28-33. doi: 10.1097/00075198-200102000-00005.
Tobin MJ, Jubran A, Laghi F. Patient-ventilator interaction. Am J Respir Crit Care Med. 2001 Apr;163(5):1059-63. doi: 10.1164/ajrccm.163.5.2005125. No abstract available.
Dres M, Demoule A. Monitoring diaphragm function in the ICU. Curr Opin Crit Care. 2020 Feb;26(1):18-25. doi: 10.1097/MCC.0000000000000682.
Liu L, Xu XT, Yu Y, Sun Q, Yang Y, Qiu HB. Neural control of pressure support ventilation improved patient-ventilator synchrony in patients with different respiratory system mechanical properties: a prospective, crossover trial. Chin Med J (Engl). 2021 Jan 19;134(3):281-291. doi: 10.1097/CM9.0000000000001357.
Mirabella L, Cinnella G, Costa R, Cortegiani A, Tullo L, Rauseo M, Conti G, Gregoretti C. Patient-Ventilator Asynchronies: Clinical Implications and Practical Solutions. Respir Care. 2020 Nov;65(11):1751-1766. doi: 10.4187/respcare.07284. Epub 2020 Jul 14.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
NPS
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.