Driving Pressure Variation: NAVA vs PSV

NCT ID: NCT03719365

Last Updated: 2019-04-12

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

UNKNOWN

Clinical Phase

NA

Total Enrollment

20 participants

Study Classification

INTERVENTIONAL

Study Start Date

2018-11-01

Study Completion Date

2020-11-01

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Assisted ventilation represents, nowadays, the preferred ventilation mode in clinical practice.It has been shown that assisted ventilation modes improve ventilation/perfusion matching, descrease risk of Ventilator induced lung injury and muscle atrophy and have less influence on haemodynamic function.

However, PSV (Pressure Support Ventilation) is not free from complications: it may worsen or cause lung injuries by increasing alveolar and intrathoracic negative pressure and by loosing control on Tidal Volume (Vt). Indeed, it has been demonstrated that Vt is the main factor related to VILI.

It has been shown that lower Vt and higher PEEP can improve clinical outcome only if associated with a simultaneous reduction in Driving Pressure. Increase in Driving Pressure resulted strongly associated with negative outcomes, especially if higher than 15 cm H2O.

PSV is currently the most used assisted ventilation mode. NAVA (Neurally Adjusted Ventilatory Assist) is a ventilation mode in which the diaphragmatic electrical activity (EAdi) is used as a trigger to start a mechanical breath, applying positive pressure during patient's inspiration. Diaphragmatic electrical activity (EAdi) can be detected by a particular nasogastric tube (EAdi catheter). EAdi is the currently available signal closest to the neural breathing centers, which can estimate the patient's respiratory drive, if phrenic nerves are not damaged. It has been demonstrated that NAVA ventilation can reduce the incidence of patient-ventilator asynchronies, because the delivery of the support and the cycling between inspiration and expiration are completely controlled by the patient.

However, although PSV and NAVA have been widely compared in many investigations, up to now there are no studies about driving pressure variation during these two modalities of mechanical assisted ventilation. The aim of this study is to measure changes in driving pressure at different levels of ventilatory assistance in PSV and NAVA ventilation modes.

Secondary end points are respiratory mechanics indices and patient/ventilator related asynchrony evaluation and comparison.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Any patient who is already on an assisted mode of ventilation and displays triggering efforts will be enrolled in the study and will be submitted to 3 ventilation trials, in PSV and NAVA ventilation modes; each trial will last 20 minutes. Every trial will be performed in a randomized order, based on random computer generated sequences.

During the first trial, PSV will be set in order to obtain a Vt between 6 and 8 ml/kg;this support level will be defined as PSV100. Subsequently, the corresponding NAVA level (NAVA 100) will be determined using a dedicated ventilator function (NAVA Preview) which is able to estimate NAVA level in order to deliver an equivalent inspiratory peak pressure (Paw peak) compared to that obtained during PSV mode. Afterwards, pressure support level of assistance of PSV100 and NAVA100 will be firstly increased (PSV150 and NAVA150) during the second trial and then decreased during the third trial (PSV50 and NAVA150) by 50% from basal value.

During the study period, PEEP and FiO2 will be kept equal to the values in use before patient enrollment. End-inspiration and end-expiration pauses will be performed at the end of each trial by pressing the dedicated button on the ventilator control panel. Airway pressure and flow will be recorded.

Patients, as usual, clinical practice, will be sedated at different levels and this could compromise their content of consciousness.

At the beginning of each trial, an endotracheal tube suction will be done. Last 5 minutes of each trial will be recorded and stored in a computer for subsequent statistical analysis. Respiratory mechanical indices (airway pressure, tidal volume, flow) and electric diaphragmatic activity will be recorded by a dedicated software called NAVA- tracker. At the end of each trial an arterial blood gas analysis (ABGs) will be performed to evaluate PaCO2, PH and blood oxygenation (PaO2). at the end of each trial, an ultrasound evaluation of diaphragm will be performed.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Mechanical Ventilation Complication Ventilator-Induced Lung Injury

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NA

Intervention Model

SINGLE_GROUP

Randomized, interventional, prospective study
Primary Study Purpose

SUPPORTIVE_CARE

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

NAVAPSV

Each patient enrolled in the study will be submitted to 3 ventilation trials during PSV and NAVA ventilation modes, assigned in a randomized order.

Group Type EXPERIMENTAL

NAVAPSV

Intervention Type DEVICE

During the first trial, PSV will be set in order to obtain a Vt between 6 and 8 ml/kg; this support level will be defined as PSV100. Subsequently, the corresponding NAVA level (NAVA 100) will be determined using a dedicated ventilator function (NAVA Preview) which is able to estimate NAVA level in order to deliver an equivalent inspiratory peak pressure (Paw peak) compared to that obtained during PSV mode. Afterwards, PSV100 and NAVA100 will be first increased (PSV150 and NAVA150) during the second trial and then decreased during the third trial (PSV50 and NAVA150) by 50% from basal value. During the study period, PEEP and FiO2 will be kept equal to the values in use before patient enrollment.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

NAVAPSV

During the first trial, PSV will be set in order to obtain a Vt between 6 and 8 ml/kg; this support level will be defined as PSV100. Subsequently, the corresponding NAVA level (NAVA 100) will be determined using a dedicated ventilator function (NAVA Preview) which is able to estimate NAVA level in order to deliver an equivalent inspiratory peak pressure (Paw peak) compared to that obtained during PSV mode. Afterwards, PSV100 and NAVA100 will be first increased (PSV150 and NAVA150) during the second trial and then decreased during the third trial (PSV50 and NAVA150) by 50% from basal value. During the study period, PEEP and FiO2 will be kept equal to the values in use before patient enrollment.

Intervention Type DEVICE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Age \>18 years
* Every patients undergoing partial assisted mechanical ventilation

Exclusion Criteria

* Gastro-esophageal surgery in the previous 12 months;
* Gastro-esophageal bleeding in the previous 30 days;
* Esophageal varices history;
* Maxillo-facial surgery or trauma;
* Haemodinamic instability despite adequate fluid infusion (i.e. need for continuous infusion epinephrine or vasopressin or dopamine at a dose greater than 5 mcg/kg/min to obtain systolic pressure \> 90 mmHg);
* Body temperature \> 38° C during the study screening;
* Coagulation disorders (INR \> 1.5, aPTT \> 44 sec);
* Vt \< 8 ml/kg with minimum inspiratory effort of 8 cmH2O;
* Inclusion in other research protocols
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Azienda Ospedaliero Universitaria Maggiore della Carita

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Gianmaria Cammarota

Principal investigator

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Gianmaria Cammarota, MD, PhD

Role: PRINCIPAL_INVESTIGATOR

AOU Maggiore della Carità

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

A.O.U Maggiore della Carità

Novara, , Italy

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

Italy

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Gianmaria Cammarota, MD, PhD

Role: CONTACT

00393392669420

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Gianmaria Cammarota, MD,PhD

Role: primary

003903213733406

References

Explore related publications, articles, or registry entries linked to this study.

Putensen C, Zech S, Wrigge H, Zinserling J, Stuber F, Von Spiegel T, Mutz N. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med. 2001 Jul 1;164(1):43-9. doi: 10.1164/ajrccm.164.1.2001078.

Reference Type BACKGROUND
PMID: 11435237 (View on PubMed)

Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J. Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999 Apr;159(4 Pt 1):1241-8. doi: 10.1164/ajrccm.159.4.9806077.

Reference Type BACKGROUND
PMID: 10194172 (View on PubMed)

Grasso F, Engelberts D, Helm E, Frndova H, Jarvis S, Talakoub O, McKerlie C, Babyn P, Post M, Kavanagh BP. Negative-pressure ventilation: better oxygenation and less lung injury. Am J Respir Crit Care Med. 2008 Feb 15;177(4):412-8. doi: 10.1164/rccm.200707-1004OC. Epub 2007 Dec 13.

Reference Type BACKGROUND
PMID: 18079496 (View on PubMed)

Xia J, Zhang H, Sun B, Yang R, He H, Zhan Q. Spontaneous breathing with biphasic positive airway pressure attenuates lung injury in hydrochloric acid-induced acute respiratory distress syndrome. Anesthesiology. 2014 Jun;120(6):1441-9. doi: 10.1097/ALN.0000000000000259.

Reference Type BACKGROUND
PMID: 24722174 (View on PubMed)

Futier E, Constantin JM, Combaret L, Mosoni L, Roszyk L, Sapin V, Attaix D, Jung B, Jaber S, Bazin JE. Pressure support ventilation attenuates ventilator-induced protein modifications in the diaphragm. Crit Care. 2008;12(5):R116. doi: 10.1186/cc7010. Epub 2008 Sep 11.

Reference Type BACKGROUND
PMID: 18786263 (View on PubMed)

Yoshida T, Uchiyama A, Matsuura N, Mashimo T, Fujino Y. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med. 2012 May;40(5):1578-85. doi: 10.1097/CCM.0b013e3182451c40.

Reference Type BACKGROUND
PMID: 22430241 (View on PubMed)

Yoshida T, Torsani V, Gomes S, De Santis RR, Beraldo MA, Costa EL, Tucci MR, Zin WA, Kavanagh BP, Amato MB. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med. 2013 Dec 15;188(12):1420-7. doi: 10.1164/rccm.201303-0539OC.

Reference Type BACKGROUND
PMID: 24199628 (View on PubMed)

Yoshida T, Uchiyama A, Matsuura N, Mashimo T, Fujino Y. The comparison of spontaneous breathing and muscle paralysis in two different severities of experimental lung injury. Crit Care Med. 2013 Feb;41(2):536-45. doi: 10.1097/CCM.0b013e3182711972.

Reference Type BACKGROUND
PMID: 23263584 (View on PubMed)

Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998 Feb 5;338(6):347-54. doi: 10.1056/NEJM199802053380602.

Reference Type BACKGROUND
PMID: 9449727 (View on PubMed)

Acute Respiratory Distress Syndrome Network; Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000 May 4;342(18):1301-8. doi: 10.1056/NEJM200005043421801.

Reference Type BACKGROUND
PMID: 10793162 (View on PubMed)

Malhotra A. Low-tidal-volume ventilation in the acute respiratory distress syndrome. N Engl J Med. 2007 Sep 13;357(11):1113-20. doi: 10.1056/NEJMct074213.

Reference Type BACKGROUND
PMID: 17855672 (View on PubMed)

Mascia L, Pasero D, Slutsky AS, Arguis MJ, Berardino M, Grasso S, Munari M, Boifava S, Cornara G, Della Corte F, Vivaldi N, Malacarne P, Del Gaudio P, Livigni S, Zavala E, Filippini C, Martin EL, Donadio PP, Mastromauro I, Ranieri VM. Effect of a lung protective strategy for organ donors on eligibility and availability of lungs for transplantation: a randomized controlled trial. JAMA. 2010 Dec 15;304(23):2620-7. doi: 10.1001/jama.2010.1796.

Reference Type BACKGROUND
PMID: 21156950 (View on PubMed)

Serpa Neto A, Cardoso SO, Manetta JA, Pereira VG, Esposito DC, Pasqualucci Mde O, Damasceno MC, Schultz MJ. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012 Oct 24;308(16):1651-9. doi: 10.1001/jama.2012.13730.

Reference Type BACKGROUND
PMID: 23093163 (View on PubMed)

Futier E, Constantin JM, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, Marret E, Beaussier M, Gutton C, Lefrant JY, Allaouchiche B, Verzilli D, Leone M, De Jong A, Bazin JE, Pereira B, Jaber S; IMPROVE Study Group. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013 Aug 1;369(5):428-37. doi: 10.1056/NEJMoa1301082.

Reference Type BACKGROUND
PMID: 23902482 (View on PubMed)

Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, Stewart TE, Briel M, Talmor D, Mercat A, Richard JC, Carvalho CR, Brower RG. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015 Feb 19;372(8):747-55. doi: 10.1056/NEJMsa1410639.

Reference Type BACKGROUND
PMID: 25693014 (View on PubMed)

MacIntyre NR. Respiratory function during pressure support ventilation. Chest. 1986 May;89(5):677-83. doi: 10.1378/chest.89.5.677.

Reference Type BACKGROUND
PMID: 3698697 (View on PubMed)

Brochard L, Pluskwa F, Lemaire F. Improved efficacy of spontaneous breathing with inspiratory pressure support. Am Rev Respir Dis. 1987 Aug;136(2):411-5. doi: 10.1164/ajrccm/136.2.411.

Reference Type BACKGROUND
PMID: 3619200 (View on PubMed)

Cereda M, Foti G, Marcora B, Gili M, Giacomini M, Sparacino ME, Pesenti A. Pressure support ventilation in patients with acute lung injury. Crit Care Med. 2000 May;28(5):1269-75. doi: 10.1097/00003246-200005000-00002.

Reference Type BACKGROUND
PMID: 10834664 (View on PubMed)

Nava S, Bruschi C, Fracchia C, Braschi A, Rubini F. Patient-ventilator interaction and inspiratory effort during pressure support ventilation in patients with different pathologies. Eur Respir J. 1997 Jan;10(1):177-83. doi: 10.1183/09031936.97.10010177.

Reference Type BACKGROUND
PMID: 9032512 (View on PubMed)

Esteban A, Anzueto A, Alia I, Gordo F, Apezteguia C, Palizas F, Cide D, Goldwaser R, Soto L, Bugedo G, Rodrigo C, Pimentel J, Raimondi G, Tobin MJ. How is mechanical ventilation employed in the intensive care unit? An international utilization review. Am J Respir Crit Care Med. 2000 May;161(5):1450-8. doi: 10.1164/ajrccm.161.5.9902018.

Reference Type BACKGROUND
PMID: 10806138 (View on PubMed)

Spahija J, de Marchie M, Albert M, Bellemare P, Delisle S, Beck J, Sinderby C. Patient-ventilator interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med. 2010 Feb;38(2):518-26. doi: 10.1097/CCM.0b013e3181cb0d7b.

Reference Type BACKGROUND
PMID: 20083921 (View on PubMed)

Ferreira JC, Diniz-Silva F, Moriya HT, Alencar AM, Amato MBP, Carvalho CRR. Neurally Adjusted Ventilatory Assist (NAVA) or Pressure Support Ventilation (PSV) during spontaneous breathing trials in critically ill patients: a crossover trial. BMC Pulm Med. 2017 Nov 7;17(1):139. doi: 10.1186/s12890-017-0484-5.

Reference Type BACKGROUND
PMID: 29115949 (View on PubMed)

Sinderby C, Beck J, Spahija J, de Marchie M, Lacroix J, Navalesi P, Slutsky AS. Inspiratory muscle unloading by neurally adjusted ventilatory assist during maximal inspiratory efforts in healthy subjects. Chest. 2007 Mar;131(3):711-717. doi: 10.1378/chest.06-1909.

Reference Type BACKGROUND
PMID: 17356084 (View on PubMed)

Cammarota G, Verdina F, De Vita N, Boniolo E, Tarquini R, Messina A, Zanoni M, Navalesi P, Vetrugno L, Bignami E, Corte FD, De Robertis E, Santangelo E, Vaschetto R. Effects of Varying Levels of Inspiratory Assistance with Pressure Support Ventilation and Neurally Adjusted Ventilatory Assist on Driving Pressure in Patients Recovering from Hypoxemic Respiratory Failure. J Clin Monit Comput. 2022 Apr;36(2):419-427. doi: 10.1007/s10877-021-00668-2. Epub 2021 Feb 9.

Reference Type DERIVED
PMID: 33559864 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

CE 110/18

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Ventilator Mode and Respiratory Physiology
NCT06624254 ENROLLING_BY_INVITATION