Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
20 participants
INTERVENTIONAL
2018-11-01
2020-11-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
However, PSV (Pressure Support Ventilation) is not free from complications: it may worsen or cause lung injuries by increasing alveolar and intrathoracic negative pressure and by loosing control on Tidal Volume (Vt). Indeed, it has been demonstrated that Vt is the main factor related to VILI.
It has been shown that lower Vt and higher PEEP can improve clinical outcome only if associated with a simultaneous reduction in Driving Pressure. Increase in Driving Pressure resulted strongly associated with negative outcomes, especially if higher than 15 cm H2O.
PSV is currently the most used assisted ventilation mode. NAVA (Neurally Adjusted Ventilatory Assist) is a ventilation mode in which the diaphragmatic electrical activity (EAdi) is used as a trigger to start a mechanical breath, applying positive pressure during patient's inspiration. Diaphragmatic electrical activity (EAdi) can be detected by a particular nasogastric tube (EAdi catheter). EAdi is the currently available signal closest to the neural breathing centers, which can estimate the patient's respiratory drive, if phrenic nerves are not damaged. It has been demonstrated that NAVA ventilation can reduce the incidence of patient-ventilator asynchronies, because the delivery of the support and the cycling between inspiration and expiration are completely controlled by the patient.
However, although PSV and NAVA have been widely compared in many investigations, up to now there are no studies about driving pressure variation during these two modalities of mechanical assisted ventilation. The aim of this study is to measure changes in driving pressure at different levels of ventilatory assistance in PSV and NAVA ventilation modes.
Secondary end points are respiratory mechanics indices and patient/ventilator related asynchrony evaluation and comparison.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Neurally Adjusted Ventilatory Assist (NAVA) vs Pressure Support Ventilation After Cardiac Surgery
NCT03217305
Driving Pressure as a Predictor of Mechanical Ventilation Weaning Time on Post-ARDS Patients in Pressure Support Ventilation.
NCT04078984
Proportional Assist Ventilation (PAV) in Early Stage of Critically Ill Patients
NCT01204281
Comparing Different Startegies of Positive Pressure Ventilation in Children
NCT06612125
Pressure-controlled vs Volume Controlled Ventilation on RV Function During OLV
NCT01763879
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
During the first trial, PSV will be set in order to obtain a Vt between 6 and 8 ml/kg;this support level will be defined as PSV100. Subsequently, the corresponding NAVA level (NAVA 100) will be determined using a dedicated ventilator function (NAVA Preview) which is able to estimate NAVA level in order to deliver an equivalent inspiratory peak pressure (Paw peak) compared to that obtained during PSV mode. Afterwards, pressure support level of assistance of PSV100 and NAVA100 will be firstly increased (PSV150 and NAVA150) during the second trial and then decreased during the third trial (PSV50 and NAVA150) by 50% from basal value.
During the study period, PEEP and FiO2 will be kept equal to the values in use before patient enrollment. End-inspiration and end-expiration pauses will be performed at the end of each trial by pressing the dedicated button on the ventilator control panel. Airway pressure and flow will be recorded.
Patients, as usual, clinical practice, will be sedated at different levels and this could compromise their content of consciousness.
At the beginning of each trial, an endotracheal tube suction will be done. Last 5 minutes of each trial will be recorded and stored in a computer for subsequent statistical analysis. Respiratory mechanical indices (airway pressure, tidal volume, flow) and electric diaphragmatic activity will be recorded by a dedicated software called NAVA- tracker. At the end of each trial an arterial blood gas analysis (ABGs) will be performed to evaluate PaCO2, PH and blood oxygenation (PaO2). at the end of each trial, an ultrasound evaluation of diaphragm will be performed.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
SUPPORTIVE_CARE
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
NAVAPSV
Each patient enrolled in the study will be submitted to 3 ventilation trials during PSV and NAVA ventilation modes, assigned in a randomized order.
NAVAPSV
During the first trial, PSV will be set in order to obtain a Vt between 6 and 8 ml/kg; this support level will be defined as PSV100. Subsequently, the corresponding NAVA level (NAVA 100) will be determined using a dedicated ventilator function (NAVA Preview) which is able to estimate NAVA level in order to deliver an equivalent inspiratory peak pressure (Paw peak) compared to that obtained during PSV mode. Afterwards, PSV100 and NAVA100 will be first increased (PSV150 and NAVA150) during the second trial and then decreased during the third trial (PSV50 and NAVA150) by 50% from basal value. During the study period, PEEP and FiO2 will be kept equal to the values in use before patient enrollment.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
NAVAPSV
During the first trial, PSV will be set in order to obtain a Vt between 6 and 8 ml/kg; this support level will be defined as PSV100. Subsequently, the corresponding NAVA level (NAVA 100) will be determined using a dedicated ventilator function (NAVA Preview) which is able to estimate NAVA level in order to deliver an equivalent inspiratory peak pressure (Paw peak) compared to that obtained during PSV mode. Afterwards, PSV100 and NAVA100 will be first increased (PSV150 and NAVA150) during the second trial and then decreased during the third trial (PSV50 and NAVA150) by 50% from basal value. During the study period, PEEP and FiO2 will be kept equal to the values in use before patient enrollment.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Every patients undergoing partial assisted mechanical ventilation
Exclusion Criteria
* Gastro-esophageal bleeding in the previous 30 days;
* Esophageal varices history;
* Maxillo-facial surgery or trauma;
* Haemodinamic instability despite adequate fluid infusion (i.e. need for continuous infusion epinephrine or vasopressin or dopamine at a dose greater than 5 mcg/kg/min to obtain systolic pressure \> 90 mmHg);
* Body temperature \> 38° C during the study screening;
* Coagulation disorders (INR \> 1.5, aPTT \> 44 sec);
* Vt \< 8 ml/kg with minimum inspiratory effort of 8 cmH2O;
* Inclusion in other research protocols
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Azienda Ospedaliero Universitaria Maggiore della Carita
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Gianmaria Cammarota
Principal investigator
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Gianmaria Cammarota, MD, PhD
Role: PRINCIPAL_INVESTIGATOR
AOU Maggiore della Carità
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
A.O.U Maggiore della Carità
Novara, , Italy
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Putensen C, Zech S, Wrigge H, Zinserling J, Stuber F, Von Spiegel T, Mutz N. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med. 2001 Jul 1;164(1):43-9. doi: 10.1164/ajrccm.164.1.2001078.
Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J. Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999 Apr;159(4 Pt 1):1241-8. doi: 10.1164/ajrccm.159.4.9806077.
Grasso F, Engelberts D, Helm E, Frndova H, Jarvis S, Talakoub O, McKerlie C, Babyn P, Post M, Kavanagh BP. Negative-pressure ventilation: better oxygenation and less lung injury. Am J Respir Crit Care Med. 2008 Feb 15;177(4):412-8. doi: 10.1164/rccm.200707-1004OC. Epub 2007 Dec 13.
Xia J, Zhang H, Sun B, Yang R, He H, Zhan Q. Spontaneous breathing with biphasic positive airway pressure attenuates lung injury in hydrochloric acid-induced acute respiratory distress syndrome. Anesthesiology. 2014 Jun;120(6):1441-9. doi: 10.1097/ALN.0000000000000259.
Futier E, Constantin JM, Combaret L, Mosoni L, Roszyk L, Sapin V, Attaix D, Jung B, Jaber S, Bazin JE. Pressure support ventilation attenuates ventilator-induced protein modifications in the diaphragm. Crit Care. 2008;12(5):R116. doi: 10.1186/cc7010. Epub 2008 Sep 11.
Yoshida T, Uchiyama A, Matsuura N, Mashimo T, Fujino Y. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med. 2012 May;40(5):1578-85. doi: 10.1097/CCM.0b013e3182451c40.
Yoshida T, Torsani V, Gomes S, De Santis RR, Beraldo MA, Costa EL, Tucci MR, Zin WA, Kavanagh BP, Amato MB. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med. 2013 Dec 15;188(12):1420-7. doi: 10.1164/rccm.201303-0539OC.
Yoshida T, Uchiyama A, Matsuura N, Mashimo T, Fujino Y. The comparison of spontaneous breathing and muscle paralysis in two different severities of experimental lung injury. Crit Care Med. 2013 Feb;41(2):536-45. doi: 10.1097/CCM.0b013e3182711972.
Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998 Feb 5;338(6):347-54. doi: 10.1056/NEJM199802053380602.
Acute Respiratory Distress Syndrome Network; Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000 May 4;342(18):1301-8. doi: 10.1056/NEJM200005043421801.
Malhotra A. Low-tidal-volume ventilation in the acute respiratory distress syndrome. N Engl J Med. 2007 Sep 13;357(11):1113-20. doi: 10.1056/NEJMct074213.
Mascia L, Pasero D, Slutsky AS, Arguis MJ, Berardino M, Grasso S, Munari M, Boifava S, Cornara G, Della Corte F, Vivaldi N, Malacarne P, Del Gaudio P, Livigni S, Zavala E, Filippini C, Martin EL, Donadio PP, Mastromauro I, Ranieri VM. Effect of a lung protective strategy for organ donors on eligibility and availability of lungs for transplantation: a randomized controlled trial. JAMA. 2010 Dec 15;304(23):2620-7. doi: 10.1001/jama.2010.1796.
Serpa Neto A, Cardoso SO, Manetta JA, Pereira VG, Esposito DC, Pasqualucci Mde O, Damasceno MC, Schultz MJ. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012 Oct 24;308(16):1651-9. doi: 10.1001/jama.2012.13730.
Futier E, Constantin JM, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, Marret E, Beaussier M, Gutton C, Lefrant JY, Allaouchiche B, Verzilli D, Leone M, De Jong A, Bazin JE, Pereira B, Jaber S; IMPROVE Study Group. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013 Aug 1;369(5):428-37. doi: 10.1056/NEJMoa1301082.
Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, Stewart TE, Briel M, Talmor D, Mercat A, Richard JC, Carvalho CR, Brower RG. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015 Feb 19;372(8):747-55. doi: 10.1056/NEJMsa1410639.
MacIntyre NR. Respiratory function during pressure support ventilation. Chest. 1986 May;89(5):677-83. doi: 10.1378/chest.89.5.677.
Brochard L, Pluskwa F, Lemaire F. Improved efficacy of spontaneous breathing with inspiratory pressure support. Am Rev Respir Dis. 1987 Aug;136(2):411-5. doi: 10.1164/ajrccm/136.2.411.
Cereda M, Foti G, Marcora B, Gili M, Giacomini M, Sparacino ME, Pesenti A. Pressure support ventilation in patients with acute lung injury. Crit Care Med. 2000 May;28(5):1269-75. doi: 10.1097/00003246-200005000-00002.
Nava S, Bruschi C, Fracchia C, Braschi A, Rubini F. Patient-ventilator interaction and inspiratory effort during pressure support ventilation in patients with different pathologies. Eur Respir J. 1997 Jan;10(1):177-83. doi: 10.1183/09031936.97.10010177.
Esteban A, Anzueto A, Alia I, Gordo F, Apezteguia C, Palizas F, Cide D, Goldwaser R, Soto L, Bugedo G, Rodrigo C, Pimentel J, Raimondi G, Tobin MJ. How is mechanical ventilation employed in the intensive care unit? An international utilization review. Am J Respir Crit Care Med. 2000 May;161(5):1450-8. doi: 10.1164/ajrccm.161.5.9902018.
Spahija J, de Marchie M, Albert M, Bellemare P, Delisle S, Beck J, Sinderby C. Patient-ventilator interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med. 2010 Feb;38(2):518-26. doi: 10.1097/CCM.0b013e3181cb0d7b.
Ferreira JC, Diniz-Silva F, Moriya HT, Alencar AM, Amato MBP, Carvalho CRR. Neurally Adjusted Ventilatory Assist (NAVA) or Pressure Support Ventilation (PSV) during spontaneous breathing trials in critically ill patients: a crossover trial. BMC Pulm Med. 2017 Nov 7;17(1):139. doi: 10.1186/s12890-017-0484-5.
Sinderby C, Beck J, Spahija J, de Marchie M, Lacroix J, Navalesi P, Slutsky AS. Inspiratory muscle unloading by neurally adjusted ventilatory assist during maximal inspiratory efforts in healthy subjects. Chest. 2007 Mar;131(3):711-717. doi: 10.1378/chest.06-1909.
Cammarota G, Verdina F, De Vita N, Boniolo E, Tarquini R, Messina A, Zanoni M, Navalesi P, Vetrugno L, Bignami E, Corte FD, De Robertis E, Santangelo E, Vaschetto R. Effects of Varying Levels of Inspiratory Assistance with Pressure Support Ventilation and Neurally Adjusted Ventilatory Assist on Driving Pressure in Patients Recovering from Hypoxemic Respiratory Failure. J Clin Monit Comput. 2022 Apr;36(2):419-427. doi: 10.1007/s10877-021-00668-2. Epub 2021 Feb 9.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
CE 110/18
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.