Effect of COVID-19 on Platelet Mitochondrial Bioenergetic, Antioxidants and Oxidative Stress in Infertile Men.
NCT ID: NCT05421234
Last Updated: 2022-06-22
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
45 participants
INTERVENTIONAL
2022-04-01
2023-03-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Prospective Two-arm Study of Fertility in Men With COVID-19
NCT04716179
Determining the Reproductive Health of Men Post-COVID-19 Infection
NCT04414904
Presence of SARS-CoV-2 (COVID-19) in Semen: Impact on Fertility Preservation in Male Oncological Patients ?
NCT04487639
Impact of the Coronavirus Disease 2019 (COVID-19) on Sperm Parameters
NCT04937608
Impact of Cryopreservation Methods on Post-Thaw SARS-CoV-2 in Semen Samples
NCT06703723
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Sperm contain a number of mitochondria that are spirally arranged around the middle part of the axomen. The main role of mitochondria in spermatozoa is to generate the energy needed for their motility (1, 2). Endogenous sources - coenzyme Q10 and carnitine - are key for energy production (ATP) in sperm mitochondria. Physiological functions of sperm require a minimal amount of reactive oxygen species (ROS), but uncontrolled ROS production contributes to reduced motility and sperm count, fragmentation of mtDNA (3).
In recent years, blood cells (platelets, lymphocytes and monocytes) have been used to diagnose mitochondrial disorders. Isolated peripheral blood platelets are an available source of mitochondria to assess mitochondrial health. Platelets receive energy mainly through glycolysis and oxidative phosphorylation. Platelet mitochondrial dysfunction has been demonstrated in patients with chronic kidney disease (4, 5), in patients with rheumatoid arthritis (6), in patients with acute COVID-19 (7). An O2k-respirometer (Oroboros, Austria) (8, 9) is used for respirometric analysis of platelet mitochondrial bioenergetics.
None information is available on the effect of infertility on platelet mitochondrial function, none on the effect of SARS-CoV-2 on platelet mitochondrial function in infertile patients, or the effect of vaccination on sperm function. Testicular damage and subsequent infertility due to SARS-CoV infection is expected. -2, directly via SARS-CoV-2 binding to ACE2 receptors or secondarily, in relation to the immunological and inflammatory response (10). SARS-CoV-2 virus induces excessive production of pro-inflammatory cytokines, mainly interleukin 6 (IL6), interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα). Cytokines can impair sperm movement and reduce sperm count. High levels of pro-inflammatory cytokines have been found in infertile men (with oligozoospermia, asthenozoospermia, teratozoospermia) (11).
SARS-CoV-2 virus can manipulate mitochondrial function in patients with post-COVID-19 syndrome, which may persist for a long time (12). In previous our study the investigators found modulation of platelet mitochondrial respiration, reduction ATP production via oxidative phosphorylation, reduces endogenous coenzyme Q10 production, reprogramming of cellular metabolism patients after 4-7 weeks overcoming acute COVID-19, SARS-CoV-2 (7). In another studies the investigators confirmed platelet mitochondrial bioenergetic deficiency, reduced endogenous coenzyme Q10 production in patients with post-COVID-19 syndrome, 3-6 months after overcoming COVID-19 (13, 14, 15). Results of this study contribute to the understanding of the pathobiochemical mechanisms of infertility on subcellular level and to verify the hypothesis that infertility and the effect of SARS-CoV-2 on infertility may affect platelet mitochondrial bioenergetics and endogenous coenzyme Q10 levels.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
OTHER
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
infertile men with post-COVID-19 (vaccinated or without vaccination)
15 infertile men with post-COVID-19 (vaccinated or without vaccination)
diagnostic test and sperm analysis
Diagnostic Test: 2x14 ml of peripheral blood collected in the tube with anticoagulant, for platelet isolation, respirometry mitochondrial analysis, antioxidants (coenzyme Q10, vitamin E, gamma-tocopherol, beta-carotene) and TBARS estimation.
Sperm analysis: standard spermiogram examination (volume, pH, number, motility and pathology) in the broker chamber, as well as extended examinations: mioxsys for redox potential, Vitalsperm (eosin-nigrosine staining) for sperm vitality and anti-sperm antibody (IgG) test.
infertile men without post-COVID-19 (vaccinated or without vaccination)
15 infertile men without post-COVID-19 (vaccinated or without vaccination)
diagnostic test and sperm analysis
Diagnostic Test: 2x14 ml of peripheral blood collected in the tube with anticoagulant, for platelet isolation, respirometry mitochondrial analysis, antioxidants (coenzyme Q10, vitamin E, gamma-tocopherol, beta-carotene) and TBARS estimation.
Sperm analysis: standard spermiogram examination (volume, pH, number, motility and pathology) in the broker chamber, as well as extended examinations: mioxsys for redox potential, Vitalsperm (eosin-nigrosine staining) for sperm vitality and anti-sperm antibody (IgG) test.
Control: 15 healthy men volunteers (no COVID-19, no other pathologies)
15 healthy men volunteers (no COVID-19, no other pathologies) as control group
diagnostic test and sperm analysis
Diagnostic Test: 2x14 ml of peripheral blood collected in the tube with anticoagulant, for platelet isolation, respirometry mitochondrial analysis, antioxidants (coenzyme Q10, vitamin E, gamma-tocopherol, beta-carotene) and TBARS estimation.
Sperm analysis: standard spermiogram examination (volume, pH, number, motility and pathology) in the broker chamber, as well as extended examinations: mioxsys for redox potential, Vitalsperm (eosin-nigrosine staining) for sperm vitality and anti-sperm antibody (IgG) test.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
diagnostic test and sperm analysis
Diagnostic Test: 2x14 ml of peripheral blood collected in the tube with anticoagulant, for platelet isolation, respirometry mitochondrial analysis, antioxidants (coenzyme Q10, vitamin E, gamma-tocopherol, beta-carotene) and TBARS estimation.
Sperm analysis: standard spermiogram examination (volume, pH, number, motility and pathology) in the broker chamber, as well as extended examinations: mioxsys for redox potential, Vitalsperm (eosin-nigrosine staining) for sperm vitality and anti-sperm antibody (IgG) test.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Infertile patients after COVID-19 Control group: healthy volunteers
Exclusion Criteria
18 Years
40 Years
MALE
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
GYN-FIV
UNKNOWN
Comenius University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Anna Gvozdjáková, Prof.Dr.DSc.
Role: PRINCIPAL_INVESTIGATOR
CU in Bratislava, Faculty of Medicine, Pharmacobiochemical Laboratory of 3rd department of Medicine
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Pharmacobiochemical Laboratory of Third Department of Internal Medicine, Faculty of Medicine Comenius University in Bratislava
Bratislava, , Slovakia
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Sheweita SA, Tilmisany AM, Al-Sawaf H. Mechanisms of male infertility: role of antioxidants. Curr Drug Metab. 2005 Oct;6(5):495-501. doi: 10.2174/138920005774330594.
Gvozdjakova A, Kucharska J, Dubravicky J, Mojto V, Singh RB. Coenzyme Q(1)(0), alpha-tocopherol, and oxidative stress could be important metabolic biomarkers of male infertility. Dis Markers. 2015;2015:827941. doi: 10.1155/2015/827941. Epub 2015 Feb 25.
Gvozdjakova A, Sumbalova Z, Kucharska J, Chladekova A, Rausova Z, Vancova O, Komlosi M, Ulicna O, Mojto V. Platelet mitochondrial bioenergetic analysis in patients with nephropathies and non-communicable diseases: a new method. Bratisl Lek Listy. 2019;120(9):630-635. doi: 10.4149/BLL_2019_104.
Gvozdjakova A, Sumbalova Z, Kucharska J, Komlosi M, Rausova Z, Vancova O, Szamosova M, Mojto V. Platelet Mitochondrial Respiration, Endogenous Coenzyme Q10 and Oxidative Stress in Patients with Chronic Kidney Disease. Diagnostics (Basel). 2020 Mar 23;10(3):176. doi: 10.3390/diagnostics10030176.
Gvozdjakova A, Sumbalova Z, Kucharska J, Szamosova M, Capova L, Rausova Z, Vancova O, Mojto V, Langsjoen P, Palacka P. Platelet mitochondrial respiration and coenzyme Q10 could be used as new diagnostic strategy for mitochondrial dysfunction in rheumatoid diseases. PLoS One. 2021 Sep 28;16(9):e0256135. doi: 10.1371/journal.pone.0256135. eCollection 2021.
Sumbalova Z, Kucharska J, Palacka P, Rausova Z, Langsjoen PH, Langsjoen AM, Gvozdjakova A. Platelet mitochondrial function and endogenous coenzyme Q10 levels are reduced in patients after COVID-19. Bratisl Lek Listy. 2022;123(1):9-15. doi: 10.4149/BLL_2022_002.
Pesta D, Gnaiger E. High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol. 2012;810:25-58. doi: 10.1007/978-1-61779-382-0_3.
Abobaker A, Raba AA. Does COVID-19 affect male fertility? World J Urol. 2021 Mar;39(3):975-976. doi: 10.1007/s00345-020-03208-w. Epub 2020 Apr 21. No abstract available.
Rajak P, Roy S, Dutta M, Podder S, Sarkar S, Ganguly A, Mandi M, Khatun S. Understanding the cross-talk between mediators of infertility and COVID-19. Reprod Biol. 2021 Dec;21(4):100559. doi: 10.1016/j.repbio.2021.100559. Epub 2021 Sep 1.
Gvozdjakova A, Klauco F, Kucharska J, Sumbalova Z. Is mitochondrial bioenergetics and coenzyme Q10 the target of a virus causing COVID-19? Bratisl Lek Listy. 2020;121(11):775-778. doi: 10.4149/BLL_2020_126.
Boguenet M, Bouet PE, Spiers A, Reynier P, May-Panloup P. Mitochondria: their role in spermatozoa and in male infertility. Hum Reprod Update. 2021 Jun 22;27(4):697-719. doi: 10.1093/humupd/dmab001.
Khalili MA, Leisegang K, Majzoub A, Finelli R, Panner Selvam MK, Henkel R, Mojgan M, Agarwal A. Male Fertility and the COVID-19 Pandemic: Systematic Review of the Literature. World J Mens Health. 2020 Oct;38(4):506-520. doi: 10.5534/wjmh.200134. Epub 2020 Aug 14.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
COVID-19-INFERTILITY-SK01/2022
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.