Effect of Mechanical Ventilation on Plasma Concentration Level of R-spondin Proteins

NCT ID: NCT03315702

Last Updated: 2019-07-25

Study Results

Results available

Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.

View full results

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Total Enrollment

52 participants

Study Classification

OBSERVATIONAL

Study Start Date

2017-09-22

Study Completion Date

2017-10-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

As novel agonists of Wnt/β-catenin signaling pathway, R-spondin proteins constitute a class of ligands, including R-spondin 1/2/3/4, functioning through their receptors leucine-rich repeat-containing G-protein coupled receptor (LGR)4/5/6 to enhance Wnt/β-catenin activity. Since Wnt signaling plays pivotal roles in the regulation of many life processes involved in embryogenesis and adulthood, R-spondin proteins also take part in cell proliferation, differentiation and morphogenesis.For example, in the formation of respiratory system,R-spondin 2 is required for normal laryngeal-tracheal and lung morphogenesis,and the lack of R-spondin 1 expression results in the absence of duct side-branching development and subsequent alveolar formation. In addition, R-spondins show protective effect in tissue injury and diseases. R-spondin 1 and R-spondin 3 have been reported to prevent chemotherapy- or radiotherapy-induced mucous membrane lesion. R-spondin 1 attenuates oral mucositis contributed by radiotherapy in mouse models and R-spondin 3 potentiates intestinal regeneration elicited via gastrointestinal toxic effect of chemoradiotherapy treatment. However, whether R-spondin proteins exert salient influence on acute lung injury especially induced by mechanical ventilation is deficient. Therefore, this study aims to ascertain the implication of R-spondin proteins in the pathology of mechanical ventilation induced lung injury through detecting human plasma concentration change of R-spondin 1/2/3/4 after mechanical ventilation and interference effects in mouse model, which is helpful for prevention and treatment of ventilation induced lung injury.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Mechanical ventilation is a critical intervention for patients with acute respiratory failure. However, lung overdistension induced by mechanical ventilation also causes pulmonary endothelial dysfunction. The injurious effect of mechanical stretch on pulmonary endothelium has been implicated in the development of ventilator-induced lung injury, which is characterized by pulmonary inflammation and particularly increased vascular permeability. In addition, the investigators and others have previously shown that mechanical stretch increases cultured lung endothelial monolayer permeability in vitro and promotes lung vascular permeability in mice Thus, elucidating the mechanisms underlying the mechanical stretch-induced lung endothelial barrier dysfunction may provide a novel clinical therapeutic target against ventilator-induced lung injury.

As novel agonists of Wnt/β-catenin signaling pathway, R-spondin proteins constitute a class of ligands, including R-spondin 1/2/3/4, functioning through their receptors leucine-rich repeat-containing G-protein coupled receptor (LGR)4/5/6 to enhance Wnt/β-catenin activity. Since Wnt signaling plays pivotal roles in the regulation of many life processes involved in embryogenesis and adulthood, R-spondin proteins also take part in cell proliferation, differentiation and morphogenesis. For example, in the formation of respiratory system,R-spondin 2 is required for normal laryngeal-tracheal and lung morphogenesis,and the lack of R-spondin 1 expression results in the absence of duct side-branching development and subsequent alveolar formation. In addition, R-spondins show protective effect in tissue injury and diseases. R-spondin 1 and R-spondin 3 have been reported to prevent chemotherapy- or radiotherapy-induced mucous membrane lesion. R-spondin 1 attenuates oral mucositis contributed by radiotherapy in mouse models and R-spondin 3 potentiates intestinal regeneration elicited via gastrointestinal toxic effect of chemoradiotherapy treatment. However, whether R-spondin proteins exert salient influence on acute lung injury especially induced by mechanical ventilation is deficient. Therefore, this study aims to ascertain the implication of R-spondin proteins in the pathology of mechanical ventilation induced lung injury through detecting human plasma concentration change of R-spondin 1/2/3/4 after mechanical ventilation and interference effects in mouse model, which is helpful for prevention and treatment of ventilation induced lung injury.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Acute Lung Injury

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

PROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

control/mechanical ventilation

venous blood samples collected from patients twice,relatively before mechanical ventilation and 3rd hour after mechanical ventilation

mechanical ventilation

Intervention Type OTHER

mechanical ventilation protocol: tidal volume 6-8 ml/kg, positive end-expiratory pressure 5 cm H2O, oxygen concentration 40%; respiratory rate 10-15/min, inspiratory/expiratory ratio 1:1.5.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

mechanical ventilation

mechanical ventilation protocol: tidal volume 6-8 ml/kg, positive end-expiratory pressure 5 cm H2O, oxygen concentration 40%; respiratory rate 10-15/min, inspiratory/expiratory ratio 1:1.5.

Intervention Type OTHER

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* undergo elective surgery with mechanical ventilation lasting for \> 3 hours; classified as physical status I to III according to the American Society of Anesthesiologists Physical Status Classification System; Written informed consent is approved.

Exclusion Criteria

* chronic lung disease; recent lung infection; recent anaesthetics or mechanical ventilation treatment; hemodilution with massive fluid supply during surgery; children;women during pregnancy or lactation; being involved in other clinical subjects
Minimum Eligible Age

18 Years

Maximum Eligible Age

60 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Xinhua Hospital, Shanghai Jiao Tong University School of Medicine

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Lai Jiang, chief doctor

Role: STUDY_CHAIR

Xinhua Hospital affiliated to Medicine school,Shanghai Jiaotong University

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Department of Anesthesia, Shanghai Xinhua hospital

Shanghai, Shanghai Municipality, China

Site Status

Countries

Review the countries where the study has at least one active or historical site.

China

Provided Documents

Download supplemental materials such as informed consent forms, study protocols, or participant manuals.

Document Type: Study Protocol and Statistical Analysis Plan

View Document

Document Type: Informed Consent Form

View Document

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

XH-17-015

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.