Effect of Mechanical Ventilation on Plasma Concentration Level of R-spondin Proteins
NCT ID: NCT03315702
Last Updated: 2019-07-25
Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
52 participants
OBSERVATIONAL
2017-09-22
2017-10-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Effect of Early Mechanical Ventilation to Severe Acute Pancreatitis
NCT01992224
Early Use of Noninvasive Positive Pressure Ventilation for Intro-pulmonary Acute Lung Injury
NCT01581229
Diaphragm Protective Ventilation in the Intensive Care Unit
NCT03527797
Recruitment Maneuver After Bronchoalveolar Lavage in ARDS Patients
NCT05372731
Point-of-Care Bedside Lung Ultrasound Examination Advanced Trial Protocol
NCT02403791
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
As novel agonists of Wnt/β-catenin signaling pathway, R-spondin proteins constitute a class of ligands, including R-spondin 1/2/3/4, functioning through their receptors leucine-rich repeat-containing G-protein coupled receptor (LGR)4/5/6 to enhance Wnt/β-catenin activity. Since Wnt signaling plays pivotal roles in the regulation of many life processes involved in embryogenesis and adulthood, R-spondin proteins also take part in cell proliferation, differentiation and morphogenesis. For example, in the formation of respiratory system,R-spondin 2 is required for normal laryngeal-tracheal and lung morphogenesis,and the lack of R-spondin 1 expression results in the absence of duct side-branching development and subsequent alveolar formation. In addition, R-spondins show protective effect in tissue injury and diseases. R-spondin 1 and R-spondin 3 have been reported to prevent chemotherapy- or radiotherapy-induced mucous membrane lesion. R-spondin 1 attenuates oral mucositis contributed by radiotherapy in mouse models and R-spondin 3 potentiates intestinal regeneration elicited via gastrointestinal toxic effect of chemoradiotherapy treatment. However, whether R-spondin proteins exert salient influence on acute lung injury especially induced by mechanical ventilation is deficient. Therefore, this study aims to ascertain the implication of R-spondin proteins in the pathology of mechanical ventilation induced lung injury through detecting human plasma concentration change of R-spondin 1/2/3/4 after mechanical ventilation and interference effects in mouse model, which is helpful for prevention and treatment of ventilation induced lung injury.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
control/mechanical ventilation
venous blood samples collected from patients twice,relatively before mechanical ventilation and 3rd hour after mechanical ventilation
mechanical ventilation
mechanical ventilation protocol: tidal volume 6-8 ml/kg, positive end-expiratory pressure 5 cm H2O, oxygen concentration 40%; respiratory rate 10-15/min, inspiratory/expiratory ratio 1:1.5.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
mechanical ventilation
mechanical ventilation protocol: tidal volume 6-8 ml/kg, positive end-expiratory pressure 5 cm H2O, oxygen concentration 40%; respiratory rate 10-15/min, inspiratory/expiratory ratio 1:1.5.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
18 Years
60 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Xinhua Hospital, Shanghai Jiao Tong University School of Medicine
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Lai Jiang, chief doctor
Role: STUDY_CHAIR
Xinhua Hospital affiliated to Medicine school,Shanghai Jiaotong University
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Department of Anesthesia, Shanghai Xinhua hospital
Shanghai, Shanghai Municipality, China
Countries
Review the countries where the study has at least one active or historical site.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol and Statistical Analysis Plan
Document Type: Informed Consent Form
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
XH-17-015
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.