Hemodynamic Monitoring and Fluid Responsiveness in Venovenous Extracorporeal Membrane Oxygenation (VV ECMO) - "HemodynamECMOnitoring-VV Study"
NCT ID: NCT06593717
Last Updated: 2025-09-29
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
NA
30 participants
INTERVENTIONAL
2024-05-03
2027-01-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Continuous monitoring of cardiac function and circulatory status (blood pressure, blood flow to organs) is very important in intensive care medicine in order to control the administration of circulation-supporting medication and infusions. Various devices are routinely used for this task. However, in the specific situation of ECMO treatment, the measurements of these devices could be affected due to the artificial circulation; outside the body.
The purpose of this study is therefore to test the accuracy of different methods of circulation monitoring during ECMO treatment.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Evaluation of the Variation of the Sub-pulmonary Velocity-time Integral to Predict Fluid Responsiveness
NCT07202637
Impact of Fluid Resuscitation on Venous Congestion in Cardiac Critically-ill Patients
NCT07183397
The ECMO-Free Trial
NCT05486559
Performance of Non-Invasive Monitors During ANH
NCT02179827
ECMO LEft Ventricle UNloading Strategy
NCT06766006
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Generally, hemodynamic measurements can be obtained, for instance, with the following methods: pulmonary artery catheter, transthoracic echocardiography (TTE), esophageal doppler, transpulmonary thermodilution, pulse contour analysis and bioreactance, amongst others.
Maneuvers for assessing volume responsiveness include passive leg raising (PLR), respiratory pulse pressure variation (PPV), stroke volume variation (SVV), inferior vena cava ultrasound (IVC), and end-inspiratory or end-expiratory occlusion tests.
While these commonly used methods of hemodynamic assessment have been validated in various clinical scenarios, data are lacking in the setting of venovenous extracorporeal membrane oxygenation (VV ECMO). VV ECMO is commonly used for respiratory support in patients with severe acute respiratory failure. Blood is usually drained from a femoral vein, pumped through an oxygenator, where it is oxygenated and decarboxylated, and thereafter reinfused into the patient via a central venous, most commonly jugular, return cannula. Theoretically, the artificial circulation with its blood drainage and return flows may interfere with common hemodynamic monitoring techniques and lead to erroneous measurements.
The aim of this study therefore is to validate select techniques of hemodynamic monitoring and assessment of fluid responsiveness in patients on VV ECMO.
In the context of this study, the performance of different hemodynamic monitoring tools and techniques for predicting fluid responsiveness will be compared.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
DIAGNOSTIC
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Entire Study Population
The entire study population will undergo serial hemodynamic assessments throughout the course of ECMO therapy. Hemodynamic variables are obtained using transthoracic echocardiography, uncalibrated pulse contour analysis, and optionally - depending on device availability - transpulmonary thermodilution, bioreactance and esophageal doppler. Maneuvers for assessing volume responsiveness include passive leg raising (PLR), respiratory pulse pressure variation (PPV), stroke volume variation (SVV), inferior vena cava ultrasound (IVC), and end-inspiratory or end-expiratory occlusion tests.
Transthoracic Echocardiography
Transthoracic echocardiography (TTE) is used for intermittent non-invasive stroke volume (SV) measurements. It is calculated by multiplication of left ventricular out flow tract (LVOT) and LVOT velocity time integral (VTI), obtained in a parasternal long axis view and apical five chamber view, respectively.
Uncalibrated Pulse Contour Analysis
Pulse Contour Analysis allows an automated and continuous measurement of stroke volume (SV). Its underlying principle is that the integral of the systolic arterial pressure curve directly correlates with stroke volume.
Transpulmonary Thermodilution/Calibrated Pulse Contour Analysis
Transpulmonary thermodilution (TPTD) involves the administration of a cold saline bolus into a central venous catheter. A special thermistor catheter placed in the femoral or brachial artery detects the successive changes in blood temperature. The resulting heat dissipation curve is analyzed to estimate stroke volume, cardiac output and other hemodynamic variables such as intrathoracic thermal volume (ITTV), pulmonary thermal volume (PTV), global end-diastolic volume (GEDV), intrathoracic blood volume (ITBV) and extravascular lung water (EVLW). Intermittent TPTD-derived cardiac output measurements (typically performed 1-3x/d) are used to calibrate pulse contour analysis.
Esophageal Doppler
In esophageal Doppler, a thin ultrasound probe, coated with aqueous ultrasound gel, is orally or nasally inserted into the esophagus and orientated towards the aorta. By emission and detection of continuous wave Doppler signals, real time spectral waveforms of red blood cell velocity in the aorta are obtained, from which cardiac indices can be derived.
Bioreactance
Bioreactance is a noninvasive hemodynamic monitoring technique, in which four double electrode sensors are placed on the skin of the chest. A high frequency sine wave is transmitted across the thorax. Pulsatile flow in the aorta causes phase shifts and amplitude changes of this signal, which are measured across the different electrodes and used to compute cardiac output.
Passive Leg Raising
Passive Leg Raising (PLR) is a maneuver that mimics a fluid challenge by shifting about 300 ml of venous blood from the lower body to the heart. Thereby, it can help to predict fluid responsiveness without actual fluid infusion. To start with, the patient is placed in a semi-recumbent position. Then, the bed is adjusted so that the patient's torso is moved to a horizontal position and the lower limbs are raised to an angle of 45°. Hemodynamic effects occur and can be measured within one minute.
Vena Cava Ultrasound
Inferior Vena Cava (IVC) Ultrasound has become a popular technique for assessing volume status. IVC diameter is measured in a subcostal long-axis IVC view 1-2 cm from the junction with the right atrium. The magnitude of distensibility during mechanical ventilation cycles or collapsibility during spontaneous breathing has been proposed to correlate with fluid responsiveness
End-expiratory /-inspiratory occlusion test
In preload-dependent patients, mechanical ventilation induces periodic changes in cardiac output. Standardized maneuvers of end-expiratory or end-inspiratory interruption over 15 seconds may increase or decrease stroke volume, respectively, which is a valid predictor of fluid responsiveness
Fluid bolus
To verify fluid responsiveness, 500 ml of balanced crystalloids will be infused over a time of 15-20 min (25-33.33 ml/min) after completion of passive leg raising and restoration of baseline patient positioning.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Transthoracic Echocardiography
Transthoracic echocardiography (TTE) is used for intermittent non-invasive stroke volume (SV) measurements. It is calculated by multiplication of left ventricular out flow tract (LVOT) and LVOT velocity time integral (VTI), obtained in a parasternal long axis view and apical five chamber view, respectively.
Uncalibrated Pulse Contour Analysis
Pulse Contour Analysis allows an automated and continuous measurement of stroke volume (SV). Its underlying principle is that the integral of the systolic arterial pressure curve directly correlates with stroke volume.
Transpulmonary Thermodilution/Calibrated Pulse Contour Analysis
Transpulmonary thermodilution (TPTD) involves the administration of a cold saline bolus into a central venous catheter. A special thermistor catheter placed in the femoral or brachial artery detects the successive changes in blood temperature. The resulting heat dissipation curve is analyzed to estimate stroke volume, cardiac output and other hemodynamic variables such as intrathoracic thermal volume (ITTV), pulmonary thermal volume (PTV), global end-diastolic volume (GEDV), intrathoracic blood volume (ITBV) and extravascular lung water (EVLW). Intermittent TPTD-derived cardiac output measurements (typically performed 1-3x/d) are used to calibrate pulse contour analysis.
Esophageal Doppler
In esophageal Doppler, a thin ultrasound probe, coated with aqueous ultrasound gel, is orally or nasally inserted into the esophagus and orientated towards the aorta. By emission and detection of continuous wave Doppler signals, real time spectral waveforms of red blood cell velocity in the aorta are obtained, from which cardiac indices can be derived.
Bioreactance
Bioreactance is a noninvasive hemodynamic monitoring technique, in which four double electrode sensors are placed on the skin of the chest. A high frequency sine wave is transmitted across the thorax. Pulsatile flow in the aorta causes phase shifts and amplitude changes of this signal, which are measured across the different electrodes and used to compute cardiac output.
Passive Leg Raising
Passive Leg Raising (PLR) is a maneuver that mimics a fluid challenge by shifting about 300 ml of venous blood from the lower body to the heart. Thereby, it can help to predict fluid responsiveness without actual fluid infusion. To start with, the patient is placed in a semi-recumbent position. Then, the bed is adjusted so that the patient's torso is moved to a horizontal position and the lower limbs are raised to an angle of 45°. Hemodynamic effects occur and can be measured within one minute.
Vena Cava Ultrasound
Inferior Vena Cava (IVC) Ultrasound has become a popular technique for assessing volume status. IVC diameter is measured in a subcostal long-axis IVC view 1-2 cm from the junction with the right atrium. The magnitude of distensibility during mechanical ventilation cycles or collapsibility during spontaneous breathing has been proposed to correlate with fluid responsiveness
End-expiratory /-inspiratory occlusion test
In preload-dependent patients, mechanical ventilation induces periodic changes in cardiac output. Standardized maneuvers of end-expiratory or end-inspiratory interruption over 15 seconds may increase or decrease stroke volume, respectively, which is a valid predictor of fluid responsiveness
Fluid bolus
To verify fluid responsiveness, 500 ml of balanced crystalloids will be infused over a time of 15-20 min (25-33.33 ml/min) after completion of passive leg raising and restoration of baseline patient positioning.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Age 18 - 75 years
Exclusion Criteria
* Conditions not allowing for passive leg raising maneuvers, e.g. "open abdomen", known or suspected elevation of intracranial pressure, recent leg or spinal trauma or orthopedic conditions not permitting leg raising
* Known ischemic or hemorrhagic stroke within 3 months prior to study enrollment.
Suspicion of raised intracranial pressure is defined as pupil divergence (if not yet further clarified radiographically/neurologically/ophthalmologically) or signs detected in routine computed tomography scans (compressed or elapsed basal cisterns or midline shift \> 5 mm.
18 Years
75 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Medical University of Vienna
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Thomas Staudinger
Univ.-Prof. Dr.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Medical University of Vienna
Vienna, , Austria
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
1612/2023
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.