Warning Model of Myocardial Remodeling After Acute Myocardial Infarction Using Multimodal Feature Structure Technology
NCT ID: NCT06062316
Last Updated: 2024-04-30
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
4000 participants
OBSERVATIONAL
2022-10-10
2024-06-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Our previous study found that cardiac magnetic resonance imaging can accurately quantify the necrotic area and recoverable myocardium in the edematous myocardium after myocardial infarction. In this study, machine learning algorithm, variable convolution network (DCN) and capsule network (capsnet) are used to build a new neural network architecture. Structural feature extraction of multi-modal clinical image data such as MRI and ultrasound is realized. Combined with the established database of 3000 patients with myocardial infarction, the multimodal feature matrix will be constructed, and a variety of classifiers such as support vector machine (SVM) and random forest (RF) will be used for quantitative prediction of myocardial remodeling, and the effects of different classifiers were evaluated. It is expected that this project will establish a quantitative early warning model of myocardial remodeling after acute myocardial infarction in line with the characteristics of Chinese people. The same type of data outside the database will be used for verification to establish an efficient and stable early warning model.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Mulltimodal Dynamic Risk Assessment Systems of Heart Failure in Patients With Myocardial Infarction.
NCT05760157
a Foundational Model for Cardiovascular Disease Diagnosis and Prediction
NCT06591923
Enhanced Prediction Model for Major Adverse Events Following Acute Myocardial Infarction
NCT07250152
Assessment of the Diagnostic Performance of the Detection System and Establishment of an Intelligent and Rapid Triage Model
NCT06864676
Artificial Intelligence System for Early Warning of Adverse Events in Acute Myocardial Infarction
NCT07139860
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
18 Years
80 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Beijing Institute of Technology
OTHER
Xuanwu Hospital, Beijing
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Zhi Liu
Role: PRINCIPAL_INVESTIGATOR
Xuanwu Hospital, Beijing
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Xuanwu Hospital, Capital Medical University
Beijing, Xicheng, China
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Moran AE, Forouzanfar MH, Roth GA, Mensah GA, Ezzati M, Murray CJ, Naghavi M. Temporal trends in ischemic heart disease mortality in 21 world regions, 1980 to 2010: the Global Burden of Disease 2010 study. Circulation. 2014 Apr 8;129(14):1483-92. doi: 10.1161/CIRCULATIONAHA.113.004042. Epub 2014 Feb 26.
Abuomara HZA, Hassan OM, Rashid T, Baraka M. Myocardial performance index as an echocardiographic predictor of early in-hospital heart failure during first acute anterior ST-elevation myocardial infarction. Egypt Heart J. 2018 Jun;70(2):71-75. doi: 10.1016/j.ehj.2017.12.001. Epub 2017 Dec 24.
Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest. 2013 Jan;123(1):92-100. doi: 10.1172/JCI62874. Epub 2013 Jan 2.
Hendriks T, Schurer RAJ, Al Ali L, van den Heuvel AFM, van der Harst P. Left ventricular restoration devices post myocardial infarction. Heart Fail Rev. 2018 Nov;23(6):871-883. doi: 10.1007/s10741-018-9711-2.
Iborra-Egea O, Galvez-Monton C, Roura S, Perea-Gil I, Prat-Vidal C, Soler-Botija C, Bayes-Genis A. Mechanisms of action of sacubitril/valsartan on cardiac remodeling: a systems biology approach. NPJ Syst Biol Appl. 2017 Apr 18;3:12. doi: 10.1038/s41540-017-0013-4. eCollection 2017.
McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR; PARADIGM-HF Investigators and Committees. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014 Sep 11;371(11):993-1004. doi: 10.1056/NEJMoa1409077. Epub 2014 Aug 30.
Seferovic PM, Fragasso G, Petrie M, Mullens W, Ferrari R, Thum T, Bauersachs J, Anker SD, Ray R, Cavusoglu Y, Polovina M, Metra M, Ambrosio G, Prasad K, Seferovic J, Jhund PS, Dattilo G, Celutkiene J, Piepoli M, Moura B, Chioncel O, Ben Gal T, Heymans S, Jaarsma T, Hill L, Lopatin Y, Lyon AR, Ponikowski P, Lainscak M, Jankowska E, Mueller C, Cosentino F, Lund LH, Filippatos GS, Ruschitzka F, Coats AJS, Rosano GMC. Heart Failure Association of the European Society of Cardiology update on sodium-glucose co-transporter 2 inhibitors in heart failure. Eur J Heart Fail. 2020 Nov;22(11):1984-1986. doi: 10.1002/ejhf.2026. Epub 2020 Oct 27.
Pasternak B, Ueda P, Eliasson B, Svensson AM, Franzen S, Gudbjornsdottir S, Hveem K, Jonasson C, Wintzell V, Melbye M, Svanstrom H. Use of sodium glucose cotransporter 2 inhibitors and risk of major cardiovascular events and heart failure: Scandinavian register based cohort study. BMJ. 2019 Aug 29;366:l4772. doi: 10.1136/bmj.l4772.
West R, Jones D. Cardiac rehabilitation and mortality reduction after myocardial infarction: the emperor's new clothes? Evidence against cardiac rehabilitation. Heart. 2013 Jul;99(13):911-3. doi: 10.1136/heartjnl-2013-303705. Epub 2013 May 4.
Anderson L, Oldridge N, Thompson DR, Zwisler AD, Rees K, Martin N, Taylor RS. Exercise-Based Cardiac Rehabilitation for Coronary Heart Disease: Cochrane Systematic Review and Meta-Analysis. J Am Coll Cardiol. 2016 Jan 5;67(1):1-12. doi: 10.1016/j.jacc.2015.10.044.
Milani RV, Lavie CJ. Impact of cardiac rehabilitation on depression and its associated mortality. Am J Med. 2007 Sep;120(9):799-806. doi: 10.1016/j.amjmed.2007.03.026.
Karuzas A, Rumbinaite E, Verikas D, Ptasinskas T, Muckiene G, Kazakauskaite E, Zabiela V, Jurkevicius R, Vaskelyte JJ, Zaliunas R, Zaliaduonyte-Peksiene D. Accuracy of three-dimensional systolic dyssynchrony and sphericity indexes for identifying early left ventricular remodeling after acute myocardial infarction. Anatol J Cardiol. 2019 Jun;22(1):13-20. doi: 10.14744/AnatolJCardiol.2019.02844.
Kagiyama N, Shrestha S, Cho JS, Khalil M, Singh Y, Challa A, Casaclang-Verzosa G, Sengupta PP. A low-cost texture-based pipeline for predicting myocardial tissue remodeling and fibrosis using cardiac ultrasound. EBioMedicine. 2020 Apr;54:102726. doi: 10.1016/j.ebiom.2020.102726. Epub 2020 Apr 6.
Chirinos JA, Sardana M, Ansari B, Satija V, Kuriakose D, Edelstein I, Oldland G, Miller R, Gaddam S, Lee J, Suri A, Akers SR. Left Atrial Phasic Function by Cardiac Magnetic Resonance Feature Tracking Is a Strong Predictor of Incident Cardiovascular Events. Circ Cardiovasc Imaging. 2018 Dec;11(12):e007512. doi: 10.1161/CIRCIMAGING.117.007512.
Ranka S, Reddy M, Noheria A. Artificial intelligence in cardiovascular medicine. Curr Opin Cardiol. 2021 Jan;36(1):26-35. doi: 10.1097/HCO.0000000000000812.
Ahmad T, Lund LH, Rao P, Ghosh R, Warier P, Vaccaro B, Dahlstrom U, O'Connor CM, Felker GM, Desai NR. Machine Learning Methods Improve Prognostication, Identify Clinically Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart Failure Patients. J Am Heart Assoc. 2018 Apr 12;7(8):e008081. doi: 10.1161/JAHA.117.008081.
Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, Andreini D, Budoff MJ, Cademartiri F, Callister TQ, Chang HJ, Chinnaiyan K, Chow BJ, Cury RC, Delago A, Gomez M, Gransar H, Hadamitzky M, Hausleiter J, Hindoyan N, Feuchtner G, Kaufmann PA, Kim YJ, Leipsic J, Lin FY, Maffei E, Marques H, Pontone G, Raff G, Rubinshtein R, Shaw LJ, Stehli J, Villines TC, Dunning A, Min JK, Slomka PJ. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J. 2017 Feb 14;38(7):500-507. doi: 10.1093/eurheartj/ehw188.
Tokodi M, Schwertner WR, Kovacs A, Toser Z, Staub L, Sarkany A, Lakatos BK, Behon A, Boros AM, Perge P, Kutyifa V, Szeplaki G, Geller L, Merkely B, Kosztin A. Machine learning-based mortality prediction of patients undergoing cardiac resynchronization therapy: the SEMMELWEIS-CRT score. Eur Heart J. 2020 May 7;41(18):1747-1756. doi: 10.1093/eurheartj/ehz902.
Sanchez-Cabo F, Rossello X, Fuster V, Benito F, Manzano JP, Silla JC, Fernandez-Alvira JM, Oliva B, Fernandez-Friera L, Lopez-Melgar B, Mendiguren JM, Sanz J, Ordovas JM, Andres V, Fernandez-Ortiz A, Bueno H, Ibanez B, Garcia-Ruiz JM, Lara-Pezzi E. Machine Learning Improves Cardiovascular Risk Definition for Young, Asymptomatic Individuals. J Am Coll Cardiol. 2020 Oct 6;76(14):1674-1685. doi: 10.1016/j.jacc.2020.08.017.
Commandeur F, Slomka PJ, Goeller M, Chen X, Cadet S, Razipour A, McElhinney P, Gransar H, Cantu S, Miller RJH, Rozanski A, Achenbach S, Tamarappoo BK, Berman DS, Dey D. Machine learning to predict the long-term risk of myocardial infarction and cardiac death based on clinical risk, coronary calcium, and epicardial adipose tissue: a prospective study. Cardiovasc Res. 2020 Dec 1;116(14):2216-2225. doi: 10.1093/cvr/cvz321.
Than MP, Pickering JW, Sandoval Y, Shah ASV, Tsanas A, Apple FS, Blankenberg S, Cullen L, Mueller C, Neumann JT, Twerenbold R, Westermann D, Beshiri A, Mills NL; MI3 Collaborative. Machine Learning to Predict the Likelihood of Acute Myocardial Infarction. Circulation. 2019 Sep 10;140(11):899-909. doi: 10.1161/CIRCULATIONAHA.119.041980. Epub 2019 Aug 16.
Tan JH, Hagiwara Y, Pang W, Lim I, Oh SL, Adam M, Tan RS, Chen M, Acharya UR. Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals. Comput Biol Med. 2018 Mar 1;94:19-26. doi: 10.1016/j.compbiomed.2017.12.023. Epub 2018 Jan 2.
D'Ascenzo F, De Filippo O, Gallone G, Mittone G, Deriu MA, Iannaccone M, Ariza-Sole A, Liebetrau C, Manzano-Fernandez S, Quadri G, Kinnaird T, Campo G, Simao Henriques JP, Hughes JM, Dominguez-Rodriguez A, Aldinucci M, Morbiducci U, Patti G, Raposeiras-Roubin S, Abu-Assi E, De Ferrari GM; PRAISE study group. Machine learning-based prediction of adverse events following an acute coronary syndrome (PRAISE): a modelling study of pooled datasets. Lancet. 2021 Jan 16;397(10270):199-207. doi: 10.1016/S0140-6736(20)32519-8.
Fernandez-Ruiz I. Machine learning predicts risk in ACS. Nat Rev Cardiol. 2021 Apr;18(4):230. doi: 10.1038/s41569-021-00521-8. No abstract available.
Wang S, Zhao Y, Zhao Y, Wang Y, Fan Z, Liu Z. Construction and Clinical Relevance of a Predictive Model of Coronary Microcirculatory Dysfunction in Patients With Acute Myocardial Infarction Following Percutaneous Coronary Intervention. Rev Cardiovasc Med. 2025 Jun 30;26(6):38533. doi: 10.31083/RCM38533. eCollection 2025 Jun.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
xuanwuliuzhi
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.