A Multicenter Study on Early Diagnosis of NSTE-ACS Patients Based on Machine Learning Model

NCT ID: NCT04682756

Last Updated: 2020-12-31

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

UNKNOWN

Total Enrollment

2500 participants

Study Classification

OBSERVATIONAL

Study Start Date

2020-12-20

Study Completion Date

2022-06-01

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Early diagnosis of NSTEMI and UA patients is mainly through the construction of machine learning model.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

The patients with NSTEMI and UA were included. After manual labeling, the admiss- ion record characteristics of patients were selected. 75% of the data is used to build the model, and 25% of the data is used to verify the validity of the model. Five classification models of one-dimensional convolution (CNN), naive Bayesian (NB), support vector machine (SVM), random forest (RF) and ensemble learning were constructed to identify and diagnose NSTEMI and UA patients. Multi-fold cross-validation and ROC-AUC curve are used to measure the advantages and disadvantages of the models.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

NSTEMI - Non-ST Segment Elevation MI Unstable Angina

Keywords

Explore important study keywords that can help with search, categorization, and topic discovery.

NSTEMI UA Machine Learning

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

CASE_CONTROL

Study Time Perspective

OTHER

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

CNN model

Electronic health information of NSTEMI and UA patients in two chest pain centers from 2017 to 2019 was collected,After manual labeling, the characteristics of patient admission records were selected, and through the construction of one-dimensional convolution (CNN) model. Taking the multi-fold cross-validation and ROC-AUC curve as the measurement index, 75% of the data are modeled and 25% of the data are used to verify the effect of the model.

The model of machine learning

Intervention Type DIAGNOSTIC_TEST

Early diagnosis of NTEMI patients by machine learning model

XG boost

Through the construction of XG boost model,taking the multi-fold cross-validation and ROC-AUC curve as the measurement index, 75% of the data are modeled and 25% of the data are used to verify the effect of the model.

The model of machine learning

Intervention Type DIAGNOSTIC_TEST

Early diagnosis of NTEMI patients by machine learning model

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

The model of machine learning

Early diagnosis of NTEMI patients by machine learning model

Intervention Type DIAGNOSTIC_TEST

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Patients were included and excluded strictly according to the diagnostic criteria of Chinese guidelines for diagnosis and treatment of Non-STsegment elevation acute coronary syndrome (2016). The patients were admitted to the hospital with chest pain as the main complaint, and were admitted to the first affiliated Hospital of Xinjiang Medical University and the first affiliated Hospital of Medical College of Shihezi Univ- ersity. the patients were diagnosed as NSTEMI and UA by coronary angiography (age range from 30 to 75 years old).

Exclusion Criteria

\- 1. Patients with STEMI, aortic dissecting aneurysm, pneumothorax and other non-cardiogenic chest pain. 2.Severe hepatorenal failure, primary tumor without surgical treatment, non-severe infection complicated with shock and pregnant women. 3.Previous severe valvular disease, viral myocarditis, pericardial effusion, cardiac pacemaker implantation, cardiogenic shock with serious complications, hypertensive heart disease, various cardiomyopathy, congenital heart disease, etc.

4.Patients with heart disease, AECOPD, lung tumor and hyperthyroidism were diagnosed in the past.
Minimum Eligible Age

18 Years

Maximum Eligible Age

75 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Shihezi University

OTHER

Sponsor Role collaborator

First Affiliated Hospital of Xinjiang Medical University

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Xiang Ma

Department of Cardiology

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Aikeliyaer Ainiwaer, M.D

Role: PRINCIPAL_INVESTIGATOR

First Affiliated Hospital of Xinjiang Medical University

Quan Qi, Ph.D

Role: STUDY_DIRECTOR

College of Information and Technology, Shihezi University

Yi Ying Du, M.D

Role: PRINCIPAL_INVESTIGATOR

First Affiliated Hospital of Xinjiang Medical University

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

The first affiliated Hospital of Xinjiang Medical University

Ürümqi, Xinjiang, China

Site Status

Countries

Review the countries where the study has at least one active or historical site.

China

References

Explore related publications, articles, or registry entries linked to this study.

Cuocolo R, Perillo T, De Rosa E, Ugga L, Petretta M. Current applications of big data and machine learning in cardiology. J Geriatr Cardiol. 2019 Aug;16(8):601-607. doi: 10.11909/j.issn.1671-5411.2019.08.002.

Reference Type BACKGROUND
PMID: 31555327 (View on PubMed)

Ambale-Venkatesh B, Yang X, Wu CO, Liu K, Hundley WG, McClelland R, Gomes AS, Folsom AR, Shea S, Guallar E, Bluemke DA, Lima JAC. Cardiovascular Event Prediction by Machine Learning: The Multi-Ethnic Study of Atherosclerosis. Circ Res. 2017 Oct 13;121(9):1092-1101. doi: 10.1161/CIRCRESAHA.117.311312. Epub 2017 Aug 9.

Reference Type BACKGROUND
PMID: 28794054 (View on PubMed)

Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS One. 2017 Apr 4;12(4):e0174944. doi: 10.1371/journal.pone.0174944. eCollection 2017.

Reference Type BACKGROUND
PMID: 28376093 (View on PubMed)

Patel BB, Sperotto F, Molina M, Kimura S, Delgado MI, Santillana M, Kheir JN. Avoidable Serum Potassium Testing in the Cardiac ICU: Development and Testing of a Machine-Learning Model. Pediatr Crit Care Med. 2021 Apr 1;22(4):392-400. doi: 10.1097/PCC.0000000000002626.

Reference Type BACKGROUND
PMID: 33332868 (View on PubMed)

Groepenhoff F, Eikendal ALM, Bots SH, van Ommen AM, Overmars LM, Kapteijn D, Pasterkamp G, Reiber JHC, Hautemann D, Menken R, Wittekoek ME, Hofstra L, Onland-Moret NC, Haitjema S, Hoefer I, Leiner T, den Ruijter HM. Cardiovascular imaging of women and men visiting the outpatient clinic with chest pain or discomfort: design and rationale of the ARGUS Study. BMJ Open. 2020 Dec 15;10(12):e040712. doi: 10.1136/bmjopen-2020-040712.

Reference Type BACKGROUND
PMID: 33323438 (View on PubMed)

Kwon JM, Jeon KH, Kim HM, Kim MJ, Lim S, Kim KH, Song PS, Park J, Choi RK, Oh BH. Deep-learning-based risk stratification for mortality of patients with acute myocardial infarction. PLoS One. 2019 Oct 31;14(10):e0224502. doi: 10.1371/journal.pone.0224502. eCollection 2019.

Reference Type BACKGROUND
PMID: 31671144 (View on PubMed)

Chowdhury MEH, Alzoubi K, Khandakar A, Khallifa R, Abouhasera R, Koubaa S, Ahmed R, Hasan MA. Wearable Real-Time Heart Attack Detection and Warning System to Reduce Road Accidents. Sensors (Basel). 2019 Jun 20;19(12):2780. doi: 10.3390/s19122780.

Reference Type BACKGROUND
PMID: 31226858 (View on PubMed)

Wu CC, Hsu WD, Islam MM, Poly TN, Yang HC, Nguyen PA, Wang YC, Li YJ. An artificial intelligence approach to early predict non-ST-elevation myocardial infarction patients with chest pain. Comput Methods Programs Biomed. 2019 May;173:109-117. doi: 10.1016/j.cmpb.2019.01.013. Epub 2019 Jan 31.

Reference Type BACKGROUND
PMID: 31046985 (View on PubMed)

Bernatz S, Ackermann J, Mandel P, Kaltenbach B, Zhdanovich Y, Harter PN, Doring C, Hammerstingl R, Bodelle B, Smith K, Bucher A, Albrecht M, Rosbach N, Basten L, Yel I, Wenzel M, Bankov K, Koch I, Chun FK, Kollermann J, Wild PJ, Vogl TJ. Comparison of machine learning algorithms to predict clinically significant prostate cancer of the peripheral zone with multiparametric MRI using clinical assessment categories and radiomic features. Eur Radiol. 2020 Dec;30(12):6757-6769. doi: 10.1007/s00330-020-07064-5. Epub 2020 Jul 16.

Reference Type BACKGROUND
PMID: 32676784 (View on PubMed)

Md Idris N, Chiam YK, Varathan KD, Wan Ahmad WA, Chee KH, Liew YM. Feature selection and risk prediction for patients with coronary artery disease using data mining. Med Biol Eng Comput. 2020 Dec;58(12):3123-3140. doi: 10.1007/s11517-020-02268-9. Epub 2020 Nov 6.

Reference Type BACKGROUND
PMID: 33155096 (View on PubMed)

Allen B, Molokie R, Royston TJ. Early Detection of Acute Chest Syndrome Through Electronic Recording and Analysis of Auscultatory Percussion. IEEE J Transl Eng Health Med. 2020 Sep 30;8:4900108. doi: 10.1109/JTEHM.2020.3027802. eCollection 2020.

Reference Type BACKGROUND
PMID: 33094035 (View on PubMed)

Eberhard M, Nadarevic T, Cousin A, von Spiczak J, Hinzpeter R, Euler A, Morsbach F, Manka R, Keller DI, Alkadhi H. Machine learning-based CT fractional flow reserve assessment in acute chest pain: first experience. Cardiovasc Diagn Ther. 2020 Aug;10(4):820-830. doi: 10.21037/cdt-20-381.

Reference Type BACKGROUND
PMID: 32968637 (View on PubMed)

Ma Q, Ma Y, Yu T, Sun Z, Hou Y. Radiomics of Non-Contrast-Enhanced T1 Mapping: Diagnostic and Predictive Performance for Myocardial Injury in Acute ST-Segment-Elevation Myocardial Infarction. Korean J Radiol. 2021 Apr;22(4):535-546. doi: 10.3348/kjr.2019.0969. Epub 2020 Nov 30.

Reference Type BACKGROUND
PMID: 33289360 (View on PubMed)

Lee HC, Park JS, Choe JC, Ahn JH, Lee HW, Oh JH, Choi JH, Cha KS, Hong TJ, Jeong MH; Korea Acute Myocardial Infarction Registry (KAMIR) and Korea Working Group on Myocardial Infarction (KorMI) Investigators. Prediction of 1-Year Mortality from Acute Myocardial Infarction Using Machine Learning. Am J Cardiol. 2020 Oct 15;133:23-31. doi: 10.1016/j.amjcard.2020.07.048. Epub 2020 Jul 26.

Reference Type BACKGROUND
PMID: 32811651 (View on PubMed)

Zheng Y, Li T. Letter to the Editor concerning the article "Machine learning for prediction of 30-day mortality after ST elevation myocardial infarction". Int J Cardiol. 2018 Sep 1;266:41. doi: 10.1016/j.ijcard.2017.11.061. No abstract available.

Reference Type BACKGROUND
PMID: 29887469 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

XMa

Identifier Type: -

Identifier Source: org_study_id