Investigating the Anabolic Response to Resistance Exercise During Critical Illness
NCT ID: NCT05197231
Last Updated: 2024-03-07
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
SUSPENDED
NA
24 participants
INTERVENTIONAL
2022-12-25
2027-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
The aim of this study is to investigate the effects of resistance exercise on muscle protein turnover in ICU patients. The investigators hypothesize that resistance exercise, in addition to amino acid supplementation and routine physiotherapy, results in an improved lower limb muscle protein balance compared to amino acid supplementation and routine physiotherapy alone.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
The Effect of High Protein and Early Resistance Exercise Versus Usual Care in Critically Ill Patients
NCT04261543
Resistance Training and Blood Flow Restriction
NCT04938947
Resisted Sprint and Plyometric Training on Lower Limb Functional Performance in Young Adult Male Football Players.
NCT04837300
Lower and Higher Load Resistance Exercise Protocols: Acute Muscle Activation and Skeletal Muscle Hypertrophy
NCT03991117
The Effect of Functional Respiratory Muscle Training on Respiratory Function and Physical Performance
NCT06494930
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The debilitating impact of critical illness has been recognized for several decades. Disability related to intensive care is now described as a syndrome called ICU-acquired weakness (ICUAW). ICUAW affects up to 70% of ICU patients and is most common with higher illness severity. Patients that develop ICUAW require longer hospitalization and have a higher risk of death. Weakness also has significant long-term consequences, and is associated with significant health care costs, delayed return to work, and overall poor quality of life.
Preventing or reducing muscle atrophy is a potential way to counteract weakness. Critical illness is associated with a rapid loss of skeletal muscle. Studies in exercise physiology have demonstrated that resistance training and amino acid ingestion have synergistic effects on muscle protein synthesis in healthy subjects. It is therefore an appealing therapy to counteract muscle wasting in the ICU.
Despite several clinical trials, there is equipoise regarding the efficacy of exercise in improving physical function in-ICU or after discharge. These mixed signals are unsurprising given the heterogeneous causes of ICUAW. Only a few studies in this field assess muscle architecture or cellular signaling in response to training. However, the gold standard in determining the anabolic response to exercise is to directly measure the effect on protein synthesis and breakdown. To our knowledge there is still no published research using this methodology to assess the effects of exercise interventions in critically ill patients.
Aim and hypothesis
The overall aim of this project is to determine the anabolic response to resistance exercise during critical illness. The investigators hypothesize that resistance exercise, in addition to amino acid supplementation and routine physiotherapy, results in an improved muscle protein balance in ICU patients compared to amino acid supplementation and routine physiotherapy alone (primary outcome). The effect of the intervention on other parameters of muscle protein kinetics and within-group differences in protein kinetics before and after physiotherapy will be assessed as secondary outcome measures.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
SINGLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
IV amino acids + standardized physiotherapy with lower limb resistance exercise.
Research subjects randomized to the intervention group will receive an infusion of IV amino acids during a session of protocolized physiotherapy that includes a knee extension resistance exercise targeting the thigh muscles. The supplemental amino acid infusion will continue up until 90 minutes after the subject has returned to bed rest.
Resisted knee extension exercise
Patients in the intervention group will perform a seated knee extension exercise in three sets. Resistance will be adjusted using ankle weights, targeting 8-12 repetitions per set.
IV amino acids
IV amino acids (Glavamin, Fresenius Kabi) delivered by continuous infusion at a rate of 0.1 g/kg/h. The infusion is started immediately prior to physiotherapy and continued until all blood samples required for outcome assessment are collected during a 90-minute resting period after the exercise session.
IV amino acids + standardized physiotherapy.
Research subjects randomized to the control group will receive an infusion of IV amino acids during a session of protocolized physiotherapy NOT including lower limb resistance exercise. The supplemental amino acid infusion will continue up until 90 minutes after the subject has returned to bed rest.
IV amino acids
IV amino acids (Glavamin, Fresenius Kabi) delivered by continuous infusion at a rate of 0.1 g/kg/h. The infusion is started immediately prior to physiotherapy and continued until all blood samples required for outcome assessment are collected during a 90-minute resting period after the exercise session.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Resisted knee extension exercise
Patients in the intervention group will perform a seated knee extension exercise in three sets. Resistance will be adjusted using ankle weights, targeting 8-12 repetitions per set.
IV amino acids
IV amino acids (Glavamin, Fresenius Kabi) delivered by continuous infusion at a rate of 0.1 g/kg/h. The infusion is started immediately prior to physiotherapy and continued until all blood samples required for outcome assessment are collected during a 90-minute resting period after the exercise session.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. Patient deemed suitable for active mobilization by the attending physician and physiotherapist.
3. Not expected to be discharged or transferred from the unit within 24 h of enrollment.
4. Functioning arterial catheter in situ.
Exclusion Criteria
2. Systemic anticoagulation with LMWH/UFH/DOAC in therapeutic dose range for deep vein thrombosis or pulmonary embolism, or dual antiplatelet therapy. If LMWH is administered twice daily, the patient is eligible for participation provided that vascular access is performed at nadir prior to the first daily dose.
3. Clinically significant inherited or acquired disorder of hemostasis.
4. Morbid obesity that interferes with femoral cannulation or doppler measurements.
5. Hemodynamic instability requiring ongoing volume resuscitation with crystalloid solutions or blood products.
6. Lower-limb amputee.
7. Lower-limb artherosclerotic disease with critical ischemia.
8. Metastatic cancer or active hematological malignancy.
9. Inherited disorder of amino acid metabolism.
10. Chronic muscle, neuromuscular and neurologic disease with prior documentation of clinically significant lower-limb involvement.
11. Pregnancy.
12. CAM-ICU screening positive for delirium.
13. Single organ failure not requiring invasive mechanical ventilation prior to enrollment.
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Karolinska University Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Martin Sundstrom Rehal
Principal Investigator
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Martin Sundström Rehal, MD PhD
Role: PRINCIPAL_INVESTIGATOR
Karolinska University Hospital
Olav Rooyackers, PhD
Role: STUDY_CHAIR
Karolinska Institutet
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Karolinska University Hospital
Huddinge, Stockholm County, Sweden
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Batt J, Herridge MS, Dos Santos CC. From skeletal muscle weakness to functional outcomes following critical illness: a translational biology perspective. Thorax. 2019 Nov;74(11):1091-1098. doi: 10.1136/thoraxjnl-2016-208312. Epub 2019 Aug 20.
Herridge MS, Tansey CM, Matte A, Tomlinson G, Diaz-Granados N, Cooper A, Guest CB, Mazer CD, Mehta S, Stewart TE, Kudlow P, Cook D, Slutsky AS, Cheung AM; Canadian Critical Care Trials Group. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011 Apr 7;364(14):1293-304. doi: 10.1056/NEJMoa1011802.
Plank LD, Connolly AB, Hill GL. Sequential changes in the metabolic response in severely septic patients during the first 23 days after the onset of peritonitis. Ann Surg. 1998 Aug;228(2):146-58. doi: 10.1097/00000658-199808000-00002.
Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, Hopkinson NS, Phadke R, Dew T, Sidhu PS, Velloso C, Seymour J, Agley CC, Selby A, Limb M, Edwards LM, Smith K, Rowlerson A, Rennie MJ, Moxham J, Harridge SD, Hart N, Montgomery HE. Acute skeletal muscle wasting in critical illness. JAMA. 2013 Oct 16;310(15):1591-600. doi: 10.1001/jama.2013.278481.
Wolfe RR. Skeletal muscle protein metabolism and resistance exercise. J Nutr. 2006 Feb;136(2):525S-528S. doi: 10.1093/jn/136.2.525S.
Doiron KA, Hoffmann TC, Beller EM. Early intervention (mobilization or active exercise) for critically ill adults in the intensive care unit. Cochrane Database Syst Rev. 2018 Mar 27;3(3):CD010754. doi: 10.1002/14651858.CD010754.pub2.
Connolly B, Salisbury L, O'Neill B, Geneen L, Douiri A, Grocott MP, Hart N, Walsh TS, Blackwood B; ERACIP Group. Exercise rehabilitation following intensive care unit discharge for recovery from critical illness. Cochrane Database Syst Rev. 2015 Jun 22;2015(6):CD008632. doi: 10.1002/14651858.CD008632.pub2.
Fossat G, Baudin F, Courtes L, Bobet S, Dupont A, Bretagnol A, Benzekri-Lefevre D, Kamel T, Muller G, Bercault N, Barbier F, Runge I, Nay MA, Skarzynski M, Mathonnet A, Boulain T. Effect of In-Bed Leg Cycling and Electrical Stimulation of the Quadriceps on Global Muscle Strength in Critically Ill Adults: A Randomized Clinical Trial. JAMA. 2018 Jul 24;320(4):368-378. doi: 10.1001/jama.2018.9592.
Hickmann CE, Castanares-Zapatero D, Deldicque L, Van den Bergh P, Caty G, Robert A, Roeseler J, Francaux M, Laterre PF. Impact of Very Early Physical Therapy During Septic Shock on Skeletal Muscle: A Randomized Controlled Trial. Crit Care Med. 2018 Sep;46(9):1436-1443. doi: 10.1097/CCM.0000000000003263.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol and Statistical Analysis Plan
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
K 2021-10530
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.