Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
WITHDRAWN
NA
INTERVENTIONAL
2020-09-01
2021-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
The ketogenic diet is a high fat, low carbohydrate, adequate-protein diet that promotes metabolic ketosis (ketone body production) through hepatic metabolism of fatty acids. High fat, low carbohydrate diets have been shown to reduce duration of ventilator support and partial pressure carbon dioxide in patients with acute respiratory failure. In addition, metabolic ketosis reduces systemic inflammation. This mechanism could be leveraged to halt the cytokine storm characteristic of COVID-19 infection.
The hypothesis of this study is that the administration of a ketogenic diet will improve gas exchange, reduce inflammation, and duration of mechanical ventilation. The plan is to enroll 15 intubated patients with COVID 19 infection and administer a 4:1 ketogenic formula during their intubation.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Ketogenic Diet Health and Longevity
NCT05939011
Ketogenic Diet for Obesity Hypoventilation Syndrome
NCT04108819
Effects of a Ketogenic Diet on Acute Stroke
NCT01997749
Investigating the Production of Lipoproteins and Acetyl-CoA During a Ketogenic Diet
NCT03901014
Impact of Exogenous Ketones on Indices of Keto-Adaptation in Obese Subjects on Weight Reducing Diets.
NCT06449287
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Alterations in macronutrient composition may be leveraged to improve ventilation and inflammation in COVID-19 patients. The ketogenic diet is a high fat, low carbohydrate, adequate protein diet that promotes ketone body production through hepatic metabolism of fatty acids. High fat, low carbohydrate diets have been shown to reduce duration of ventilator support and partial pressure carbon dioxide in patients with acute respiratory failure. Switching from glucose to fat oxidation lowers the respiratory quotient, thereby reducing the amount of carbon dioxide produced. This reduces ventilator demands and may improve oxygenation by lowering alveolar carbon dioxide levels, ultimately reducing time on mechanical ventilation. A study published in 1989 compared 10 participants intubated for acute respiratory failure and randomized to a high-fat, low carbohydrate diet and 10 participants receiving a standard isocaloric, isonitrogenous diet and showed a decrease in the partial pressure of carbon dioxide of 16% in the ketogenic diet group compared to a 4% increase in the standard diet group (p=0.003). The patients in the high-fat diet group had a mean of 62 fewer hours on a ventilator (p = 0.006) compared to the control group.
The high-fat diet used in the study had a ratio of 1.2:1 fat to protein and carbohydrate combined in grams. The ketogenic diet, which has been used safely and effectively in patients with chronic epilepsy for nearly one century and more recently in critically ill, intubated patients for the management of refractory and super-refractory status epilepticus has a 4:1 ratio (90% fat kilocalories). While a 1:1 ratio diet can produce a state of mild metabolic ketosis (typically \~ 1 mmol/L of the ketone body betahydroxybutyrate, measured in serum), a higher 4:1 ratio ketogenic diet can produce higher ketone body betahydroxybutyrate levels and more rapidly (up to 2 mmol/L within 24 hours of initiation). One study of obese patients treated with ketogenic diet reported that increases in ketone body production correlated with a lower partial pressure of carbon dioxide levels. A more recent study showed that patients with refractory epilepsy had a reduction in the respiratory quotient and increased fatty acid oxidation without a change in the respiratory energy expenditure with chronic use of the ketogenic diet. These findings were replicated in healthy subjects on ketogenic diet compared to a control group and patients on a ketogenic diet also had a significant reduction in carbon dioxide output and partial pressure of carbon dioxide. The authors concluded that a ketogenic diet may decrease carbon dioxide body stores and that use of a ketogenic diet may be beneficial for patients with respiratory failure. Even in patients without hypercapnia (primarily hypoxic respiratory failure), lowering carbon dioxide production permits lowering tidal volumes - a cornerstone of acute respiratory distress syndrome management.
In addition to reducing the partial pressure of carbon dioxide, metabolic ketosis reduces systemic inflammation. This mechanism could be leveraged to halt the cytokine storm characteristic of COVID-19 infection. Several studies provide evidence that pro-inflammatory cytokine production is significantly reduced in animals fed a ketogenic diet in a variety of disease models. In a rodent model of Parkinson's disease, mice were found to have significantly decreased levels of pro-inflammatory, macrophage secreted cytokines interleukin-1β, interleukin-6, and Tumor necrosis factor-alpha after 1 week of treatment with a ketogenic diet. Likewise, rats pretreated with a ketogenic diet prior to injection with lipopolysaccharide to induce fever did not experience an increase in body temperature or interleukin-1β, while significant increases were seen in control animals not pretreated with a ketogenic diet. In a mouse model of NLRP3-mediated diseases as well as human monocytes, the ketone body beta-hydroxybutyrate inhibited the NLRP3 inflammasome-mediated production of interleukin-1β and interleukin-18. These findings have been replicated in several recent animal studies and preliminary studies in humans. The hypothesis of this study is that through induction of metabolic ketosis combined with carbohydrate restriction, a ketogenic diet is protective against the cytokine storm in COVID-19. With its carbon dioxide-lowering and anti-inflammatory properties, a ketogenic diet may become an important component of the acute respiratory distress syndrome arsenal with immediate relevance to the current COVID-19 pandemic.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Intubated patients with COVID-19 on a ketogenic diet only
4:1 ketogenic diet formula
Ketogenic diet
4:1 ratio enteral ketogenic formula within 48 hours of intubation
standard of care
standard of care/supportive therapy
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Ketogenic diet
4:1 ratio enteral ketogenic formula within 48 hours of intubation
standard of care
standard of care/supportive therapy
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* COVID-19 positive and respiratory failure requiring intubation
* Legally authorized representative
Exclusion Criteria
* Liver failure
* Acute Pancreatitis
* Inability to tolerate enteral feeds, ileus, gastrointestinal bleeding
* Known Pregnancy
* Received propofol infusion within 24 hours
* Known fatty acid oxidation disorder or pyruvate carboxylase deficiency
18 Years
80 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Johns Hopkins University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Mackenzie Cervenka, MD
Role: PRINCIPAL_INVESTIGATOR
Johns Hopkins University
References
Explore related publications, articles, or registry entries linked to this study.
Ji Y, Ma Z, Peppelenbosch MP, Pan Q. Potential association between COVID-19 mortality and health-care resource availability. Lancet Glob Health. 2020 Apr;8(4):e480. doi: 10.1016/S2214-109X(20)30068-1. Epub 2020 Feb 25. No abstract available.
al-Saady NM, Blackmore CM, Bennett ED. High fat, low carbohydrate, enteral feeding lowers PaCO2 and reduces the period of ventilation in artificially ventilated patients. Intensive Care Med. 1989;15(5):290-5. doi: 10.1007/BF00263863.
van den Berg B, Bogaard JM, Hop WC. High fat, low carbohydrate, enteral feeding in patients weaning from the ventilator. Intensive Care Med. 1994 Aug;20(7):470-5. doi: 10.1007/BF01711897.
Cervenka MC, Hartman AL, Venkatesan A, Geocadin RG, Kossoff EH. The ketogenic diet for medically and surgically refractory status epilepticus in the neurocritical care unit. Neurocrit Care. 2011 Dec;15(3):519-24. doi: 10.1007/s12028-011-9546-3.
Cervenka MC, Hocker S, Koenig M, Bar B, Henry-Barron B, Kossoff EH, Hartman AL, Probasco JC, Benavides DR, Venkatesan A, Hagen EC, Dittrich D, Stern T, Radzik B, Depew M, Caserta FM, Nyquist P, Kaplan PW, Geocadin RG. Phase I/II multicenter ketogenic diet study for adult superrefractory status epilepticus. Neurology. 2017 Mar 7;88(10):938-943. doi: 10.1212/WNL.0000000000003690. Epub 2017 Feb 8.
McDonald TJW, Cervenka MC. Ketogenic Diets for Adults With Highly Refractory Epilepsy. Epilepsy Curr. 2017 Nov-Dec;17(6):346-350. doi: 10.5698/1535-7597.17.6.346.
Williams TJ, Cervenka MC. The role for ketogenic diets in epilepsy and status epilepticus in adults. Clin Neurophysiol Pract. 2017 Jul 1;2:154-160. doi: 10.1016/j.cnp.2017.06.001. eCollection 2017.
Thakur KT, Probasco JC, Hocker SE, Roehl K, Henry B, Kossoff EH, Kaplan PW, Geocadin RG, Hartman AL, Venkatesan A, Cervenka MC. Ketogenic diet for adults in super-refractory status epilepticus. Neurology. 2014 Feb 25;82(8):665-70. doi: 10.1212/WNL.0000000000000151. Epub 2014 Jan 22.
McDonald TJW, Henry-Barron BJ, Felton EA, Gutierrez EG, Barnett J, Fisher R, Lwin M, Jan A, Vizthum D, Kossoff EH, Cervenka MC. Improving compliance in adults with epilepsy on a modified Atkins diet: A randomized trial. Seizure. 2018 Aug;60:132-138. doi: 10.1016/j.seizure.2018.06.019. Epub 2018 Jun 22.
Park EG, Lee J, Lee J. The ketogenic diet for super-refractory status epilepticus patients in intensive care units. Brain Dev. 2019 May;41(5):420-427. doi: 10.1016/j.braindev.2018.12.007. Epub 2019 Jan 9.
Peng P, Peng J, Yin F, Deng X, Chen C, He F, Wang X, Guang S, Mao L. Ketogenic Diet as a Treatment for Super-Refractory Status Epilepticus in Febrile Infection-Related Epilepsy Syndrome. Front Neurol. 2019 Apr 26;10:423. doi: 10.3389/fneur.2019.00423. eCollection 2019.
Fried PI, McClean PA, Phillipson EA, Zamel N, Murray FT, Marliss EB. Effect of ketosis on respiratory sensitivity to carbon dioxide in obesity. N Engl J Med. 1976 May 13;294(20):1081-6. doi: 10.1056/NEJM197605132942003.
Tagliabue A, Bertoli S, Trentani C, Borrelli P, Veggiotti P. Effects of the ketogenic diet on nutritional status, resting energy expenditure, and substrate oxidation in patients with medically refractory epilepsy: a 6-month prospective observational study. Clin Nutr. 2012 Apr;31(2):246-9. doi: 10.1016/j.clnu.2011.09.012. Epub 2011 Oct 20.
Rubini A, Bosco G, Lodi A, Cenci L, Parmagnani A, Grimaldi K, Zhongjin Y, Paoli A. Effects of Twenty Days of the Ketogenic Diet on Metabolic and Respiratory Parameters in Healthy Subjects. Lung. 2015 Dec;193(6):939-45. doi: 10.1007/s00408-015-9806-7. Epub 2015 Sep 26.
Ruskin DN, Ross JL, Kawamura M Jr, Ruiz TL, Geiger JD, Masino SA. A ketogenic diet delays weight loss and does not impair working memory or motor function in the R6/2 1J mouse model of Huntington's disease. Physiol Behav. 2011 Jul 6;103(5):501-7. doi: 10.1016/j.physbeh.2011.04.001. Epub 2011 Apr 9.
Yang X, Cheng B. Neuroprotective and anti-inflammatory activities of ketogenic diet on MPTP-induced neurotoxicity. J Mol Neurosci. 2010 Oct;42(2):145-53. doi: 10.1007/s12031-010-9336-y. Epub 2010 Mar 24.
Fraser DA, Thoen J, Bondhus S, Haugen M, Reseland JE, Djoseland O, Forre O, Kjeldsen-Kragh J. Reduction in serum leptin and IGF-1 but preserved T-lymphocyte numbers and activation after a ketogenic diet in rheumatoid arthritis patients. Clin Exp Rheumatol. 2000 Mar-Apr;18(2):209-14.
Fraser DA, Thoen J, Djoseland O, Forre O, Kjeldsen-Kragh J. Serum levels of interleukin-6 and dehydroepiandrosterone sulphate in response to either fasting or a ketogenic diet in rheumatoid arthritis patients. Clin Exp Rheumatol. 2000 May-Jun;18(3):357-62.
Schreck KC, Lwin M, Strowd RE, Henry-Barron BJ, Blakeley JO, Cervenka MC. Effect of ketogenic diets on leukocyte counts in patients with epilepsy. Nutr Neurosci. 2019 Jul;22(7):522-527. doi: 10.1080/1028415X.2017.1416740. Epub 2017 Dec 18.
Chen C, Zhang XR, Ju ZY, He WF. [Advances in the research of mechanism and related immunotherapy on the cytokine storm induced by coronavirus disease 2019]. Zhonghua Shao Shang Za Zhi. 2020 Jun 20;36(6):471-475. doi: 10.3760/cma.j.cn501120-20200224-00088. Chinese.
Buyken AE, Goletzke J, Joslowski G, Felbick A, Cheng G, Herder C, Brand-Miller JC. Association between carbohydrate quality and inflammatory markers: systematic review of observational and interventional studies. Am J Clin Nutr. 2014 Apr;99(4):813-33. doi: 10.3945/ajcn.113.074252. Epub 2014 Feb 19.
Dupuis N, Curatolo N, Benoist JF, Auvin S. Ketogenic diet exhibits anti-inflammatory properties. Epilepsia. 2015 Jul;56(7):e95-8. doi: 10.1111/epi.13038. Epub 2015 May 23.
Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, D'Agostino D, Planavsky N, Lupfer C, Kanneganti TD, Kang S, Horvath TL, Fahmy TM, Crawford PA, Biragyn A, Alnemri E, Dixit VD. The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med. 2015 Mar;21(3):263-9. doi: 10.1038/nm.3804. Epub 2015 Feb 16.
Bae HR, Kim DH, Park MH, Lee B, Kim MJ, Lee EK, Chung KW, Kim SM, Im DS, Chung HY. beta-Hydroxybutyrate suppresses inflammasome formation by ameliorating endoplasmic reticulum stress via AMPK activation. Oncotarget. 2016 Oct 11;7(41):66444-66454. doi: 10.18632/oncotarget.12119.
Deora V, Albornoz EA, Zhu K, Woodruff TM, Gordon R. The Ketone Body beta-Hydroxybutyrate Does Not Inhibit Synuclein Mediated Inflammasome Activation in Microglia. J Neuroimmune Pharmacol. 2017 Dec;12(4):568-574. doi: 10.1007/s11481-017-9754-5. Epub 2017 Aug 23.
Goldberg EL, Asher JL, Molony RD, Shaw AC, Zeiss CJ, Wang C, Morozova-Roche LA, Herzog RI, Iwasaki A, Dixit VD. beta-Hydroxybutyrate Deactivates Neutrophil NLRP3 Inflammasome to Relieve Gout Flares. Cell Rep. 2017 Feb 28;18(9):2077-2087. doi: 10.1016/j.celrep.2017.02.004.
Yamanashi T, Iwata M, Kamiya N, Tsunetomi K, Kajitani N, Wada N, Iitsuka T, Yamauchi T, Miura A, Pu S, Shirayama Y, Watanabe K, Duman RS, Kaneko K. Beta-hydroxybutyrate, an endogenic NLRP3 inflammasome inhibitor, attenuates stress-induced behavioral and inflammatory responses. Sci Rep. 2017 Aug 9;7(1):7677. doi: 10.1038/s41598-017-08055-1.
Baumeister FA, Oberhoffer R, Liebhaber GM, Kunkel J, Eberhardt J, Holthausen H, Peters J. Fatal propofol infusion syndrome in association with ketogenic diet. Neuropediatrics. 2004 Aug;35(4):250-2. doi: 10.1055/s-2004-820992.
Brozova K, Broz J. The risk of hypoglycemia and the ketogenic diet for super-refractory status epilepticus patients. Brain Dev. 2019 Sep;41(8):740. doi: 10.1016/j.braindev.2019.02.008. Epub 2019 Feb 22. No abstract available.
Cervenka MC, Henry BJ, Felton EA, Patton K, Kossoff EH. Establishing an Adult Epilepsy Diet Center: Experience, efficacy and challenges. Epilepsy Behav. 2016 May;58:61-8. doi: 10.1016/j.yebeh.2016.02.038. Epub 2016 Apr 6.
van der Louw EJ, Williams TJ, Henry-Barron BJ, Olieman JF, Duvekot JJ, Vermeulen MJ, Bannink N, Williams M, Neuteboom RF, Kossoff EH, Catsman-Berrevoets CE, Cervenka MC. Ketogenic diet therapy for epilepsy during pregnancy: A case series. Seizure. 2017 Feb;45:198-201. doi: 10.1016/j.seizure.2016.12.019. Epub 2016 Dec 26.
Kossoff EH, Zupec-Kania BA, Auvin S, Ballaban-Gil KR, Christina Bergqvist AG, Blackford R, Buchhalter JR, Caraballo RH, Cross JH, Dahlin MG, Donner EJ, Guzel O, Jehle RS, Klepper J, Kang HC, Lambrechts DA, Liu YMC, Nathan JK, Nordli DR Jr, Pfeifer HH, Rho JM, Scheffer IE, Sharma S, Stafstrom CE, Thiele EA, Turner Z, Vaccarezza MM, van der Louw EJTM, Veggiotti P, Wheless JW, Wirrell EC; Charlie Foundation; Matthew's Friends; Practice Committee of the Child Neurology Society. Optimal clinical management of children receiving dietary therapies for epilepsy: Updated recommendations of the International Ketogenic Diet Study Group. Epilepsia Open. 2018 May 21;3(2):175-192. doi: 10.1002/epi4.12225. eCollection 2018 Jun.
Correction to Lancet Respir Med 2020; published online Feb 21. https://doi.org/10.1016/S2213-2600(20)30079-5. Lancet Respir Med. 2020 Apr;8(4):e26. doi: 10.1016/S2213-2600(20)30103-X. Epub 2020 Feb 28. No abstract available.
Related Links
Access external resources that provide additional context or updates about the study.
Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) - United States, February 12-March 16, 2020
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
IRB00247383
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.