Airway Pressure Release Ventilation for Moderate-to-severe Acute Respiratory Distress Syndrome

NCT ID: NCT04156438

Last Updated: 2022-01-28

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

1 participants

Study Classification

INTERVENTIONAL

Study Start Date

2020-06-29

Study Completion Date

2021-12-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

This study will examine the feasibility of a large clinical trial investigating the effectiveness of airway pressure release ventilation and low tidal volume ventilation for patients with moderate-to-severe acute respiratory distress syndrome.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Acute respiratory distress syndrome (ARDS) is a disease that has an incidence of 5% of hospitalized mechanically ventilated patients. ARDS is associated with high morbidity and mortality in critically ill patients, with mortality reported as high as 45% in severe ARDS. Patients who develop ARDS will require mechanical ventilation. Patients with ARDS are graded by the partial pressure of oxygen to fraction of inspired oxygen ratio (PaO2/FiO2) into three categories of severity: mild (PaO2/FiO2 201-300 mm Hg), moderate (PaO2/FiO2 101-200 mmHg), and severe (PaO2/FiO2 ≤ 100).

Volutrauma and barotrauma are thought to contribute to the development of ARDS and alter mortality. The damage that occurs to the lungs manifests itself as inflammation, which leads to poor gas exchange of oxygen and carbon dioxide. Several strategies of lung-protective mechanical ventilation have been investigated in ARDS, including the use of low tidal volume ventilation (LTVV) or ARDSNet strategy, high frequency oscillation ventilation (HFOV), and airway pressure release ventilation (APRV). Lung protective strategies may be best beneficial prior to the onset of the development of ARDS or early in the course of the disease. As a result of the ARDSNet trial, LTVV has been adopted as the usual standard of care of ventilation and safest mode of ventilation for patients with ARDS.

Recently, APRV has been proposed as a potential alternative to LTVV. APRV is a form of ventilation that keeps the lungs inflated through the majority of the breath cycle and allows patients to breathe spontaneously above this level of inflation. APRV allows for spontaneous respiration with increased airway pressure, potentially allowing for decreased sedation, shorter duration of mechanical ventilation, and decreased need for vasopressors. APRV has been associated with possible reduction in incidence of ARDS and in-hospital mortality in non-randomized observational studies. In patients with established ARDS, the use of APRV has also not been well studied, with most studies limited to small observational studies often with no comparison group. One randomized trial using APRV alone had less than 30% of patients having a diagnosis of ARDS and did not show any difference in any outcomes. Recently, Zhou and colleagues conducted a randomized trial comparing APRV to conventional ventilation in 138 mechanically ventilated patients with mild to severe ARDS and found that APRV may shorten the duration of mechanical ventilation and reduce intensive care unit (ICU) length of stay.

While some of these studies had shown promise of APRV compared to LTVV, there has not been acceptance of APRV into guidelines as first line ventilation, and recommendations of institutions such as the Canadian Agency for Drugs and Technology in Health (CADTH) recommends interpreting these results with caution. Consequently, there remains clinical equipoise on this issue. Some ICU clinicians will currently use APRV as a rescue mode of ventilation in ARDS in their clinical practice while others will continue with the use of LTVV. We would like to randomize patients to LTVV or APRV and examine the feasibility of conducting a large multicentre randomized controlled trial in Canada.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Acute Respiratory Distress Syndrome

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

TREATMENT

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Low tidal volume ventilation

Conventional low tidal volume ventilation

Group Type ACTIVE_COMPARATOR

Low tidal volume ventilation

Intervention Type DEVICE

Conventional ventilation strategy for patient with ARDS

Airway pressure release ventilation

Early use of airway pressure release ventilation

Group Type EXPERIMENTAL

Airway pressure release ventilation

Intervention Type DEVICE

Experimental ventilation protocol for patients with ARDS

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Low tidal volume ventilation

Conventional ventilation strategy for patient with ARDS

Intervention Type DEVICE

Airway pressure release ventilation

Experimental ventilation protocol for patients with ARDS

Intervention Type DEVICE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Fulfilling the diagnostic criteria of ARDS, according to the Berlin definition
* Moderate to severe ARDS as defined as a PaO2: FiO2 ratio of ≤150 during invasive mechanical ventilation
* Endotracheal intubation and mechanical ventilation for ARDS less than 48 hours

Exclusion Criteria

* Age less than 18 years
* Pregnancy
* Intracranial hypertension (suspected or confirmed)
* Severe chronic obstructive pulmonary disease as defined by either:

1. FEV1/FVC less than 50% predicted, or
2. Chronic hypercarbia (PaCO2\>45 mmHg), chronic hypoxemia (PaO2 \< 55 mmHg) on room air, and/or elevated admission serum HCO3 \>30 mmol/L
* Presence of documented barotrauma, i.e. pneumothorax
* Treatment with extracorporeal support (ECMO) at enrollment
* Refractory shock
* Advanced directives indicating preferences to not have advanced life support
* Moribund patient, i.e. not expected to survive longer than 24 hours
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Saskatchewan Health Authority - Regina Area

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Eric Sy

Critical Care Physician

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Eric J Sy, MD MPH FRCPC

Role: PRINCIPAL_INVESTIGATOR

Saskatchewan Health Authority - Regina Area

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Regina General Hospital

Regina, Saskatchewan, Canada

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Canada

References

Explore related publications, articles, or registry entries linked to this study.

ARDS Definition Task Force; Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012 Jun 20;307(23):2526-33. doi: 10.1001/jama.2012.5669.

Reference Type BACKGROUND
PMID: 22797452 (View on PubMed)

Walkey AJ, Summer R, Ho V, Alkana P. Acute respiratory distress syndrome: epidemiology and management approaches. Clin Epidemiol. 2012;4:159-69. doi: 10.2147/CLEP.S28800. Epub 2012 Jul 16.

Reference Type BACKGROUND
PMID: 22866017 (View on PubMed)

Gattinoni L, Pesenti A. The concept of "baby lung". Intensive Care Med. 2005 Jun;31(6):776-84. doi: 10.1007/s00134-005-2627-z. Epub 2005 Apr 6.

Reference Type BACKGROUND
PMID: 15812622 (View on PubMed)

de Haro C, Martin-Loeches I, Torrents E, Artigas A. Acute respiratory distress syndrome: prevention and early recognition. Ann Intensive Care. 2013 Apr 24;3(1):11. doi: 10.1186/2110-5820-3-11.

Reference Type BACKGROUND
PMID: 23617961 (View on PubMed)

Acute Respiratory Distress Syndrome Network; Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000 May 4;342(18):1301-8. doi: 10.1056/NEJM200005043421801.

Reference Type BACKGROUND
PMID: 10793162 (View on PubMed)

Ferguson ND, Cook DJ, Guyatt GH, Mehta S, Hand L, Austin P, Zhou Q, Matte A, Walter SD, Lamontagne F, Granton JT, Arabi YM, Arroliga AC, Stewart TE, Slutsky AS, Meade MO; OSCILLATE Trial Investigators; Canadian Critical Care Trials Group. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013 Feb 28;368(9):795-805. doi: 10.1056/NEJMoa1215554. Epub 2013 Jan 22.

Reference Type BACKGROUND
PMID: 23339639 (View on PubMed)

Young D, Lamb SE, Shah S, MacKenzie I, Tunnicliffe W, Lall R, Rowan K, Cuthbertson BH; OSCAR Study Group. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 2013 Feb 28;368(9):806-13. doi: 10.1056/NEJMoa1215716. Epub 2013 Jan 22.

Reference Type BACKGROUND
PMID: 23339638 (View on PubMed)

Jain SV, Kollisch-Singule M, Sadowitz B, Dombert L, Satalin J, Andrews P, Gatto LA, Nieman GF, Habashi NM. The 30-year evolution of airway pressure release ventilation (APRV). Intensive Care Med Exp. 2016 Dec;4(1):11. doi: 10.1186/s40635-016-0085-2. Epub 2016 May 20.

Reference Type BACKGROUND
PMID: 27207149 (View on PubMed)

Andrews PL, Shiber JR, Jaruga-Killeen E, Roy S, Sadowitz B, O'Toole RV, Gatto LA, Nieman GF, Scalea T, Habashi NM. Early application of airway pressure release ventilation may reduce mortality in high-risk trauma patients: a systematic review of observational trauma ARDS literature. J Trauma Acute Care Surg. 2013 Oct;75(4):635-41. doi: 10.1097/TA.0b013e31829d3504.

Reference Type BACKGROUND
PMID: 24064877 (View on PubMed)

Futier E, Constantin JM, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, Marret E, Beaussier M, Gutton C, Lefrant JY, Allaouchiche B, Verzilli D, Leone M, De Jong A, Bazin JE, Pereira B, Jaber S; IMPROVE Study Group. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013 Aug 1;369(5):428-37. doi: 10.1056/NEJMoa1301082.

Reference Type BACKGROUND
PMID: 23902482 (View on PubMed)

Serpa Neto A, Cardoso SO, Manetta JA, Pereira VG, Esposito DC, Pasqualucci Mde O, Damasceno MC, Schultz MJ. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012 Oct 24;308(16):1651-9. doi: 10.1001/jama.2012.13730.

Reference Type BACKGROUND
PMID: 23093163 (View on PubMed)

Maxwell RA, Green JM, Waldrop J, Dart BW, Smith PW, Brooks D, Lewis PL, Barker DE. A randomized prospective trial of airway pressure release ventilation and low tidal volume ventilation in adult trauma patients with acute respiratory failure. J Trauma. 2010 Sep;69(3):501-10; discussion 511. doi: 10.1097/TA.0b013e3181e75961.

Reference Type BACKGROUND
PMID: 20838119 (View on PubMed)

Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, Ranieri M, Rubenfeld G, Thompson BT, Wrigge H, Slutsky AS, Pesenti A; LUNG SAFE Investigators; ESICM Trials Group. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA. 2016 Feb 23;315(8):788-800. doi: 10.1001/jama.2016.0291.

Reference Type BACKGROUND
PMID: 26903337 (View on PubMed)

Habashi NM. Other approaches to open-lung ventilation: airway pressure release ventilation. Crit Care Med. 2005 Mar;33(3 Suppl):S228-40. doi: 10.1097/01.ccm.0000155920.11893.37.

Reference Type BACKGROUND
PMID: 15753733 (View on PubMed)

Lim J, Litton E, Robinson H, Das Gupta M. Characteristics and outcomes of patients treated with airway pressure release ventilation for acute respiratory distress syndrome: A retrospective observational study. J Crit Care. 2016 Aug;34:154-9. doi: 10.1016/j.jcrc.2016.03.002. Epub 2016 Mar 9.

Reference Type BACKGROUND
PMID: 27020770 (View on PubMed)

Sydow M, Burchardi H, Ephraim E, Zielmann S, Crozier TA. Long-term effects of two different ventilatory modes on oxygenation in acute lung injury. Comparison of airway pressure release ventilation and volume-controlled inverse ratio ventilation. Am J Respir Crit Care Med. 1994 Jun;149(6):1550-6. doi: 10.1164/ajrccm.149.6.8004312.

Reference Type BACKGROUND
PMID: 8004312 (View on PubMed)

Zhou Y, Jin X, Lv Y, Wang P, Yang Y, Liang G, Wang B, Kang Y. Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome. Intensive Care Med. 2017 Nov;43(11):1648-1659. doi: 10.1007/s00134-017-4912-z. Epub 2017 Sep 22.

Reference Type BACKGROUND
PMID: 28936695 (View on PubMed)

Seal K, Featherstone R. Airway Pressure Release Ventilation for Acute Respiratory Distress Syndrome: Clinical Effectiveness and Guidelines [Internet]. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; 2018 Feb 1. Available from http://www.ncbi.nlm.nih.gov/books/NBK531787/

Reference Type BACKGROUND
PMID: 30307725 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

REB-19-51

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.