Robot-assisted Hand Rehabilitation for Children With Cerebral Palsy: a Pilot Study
NCT ID: NCT03490591
Last Updated: 2019-07-12
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
8 participants
INTERVENTIONAL
2018-04-15
2018-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Materials and Methods: Five children with CP aged 6 to 18 years were recruited and received 12times of robot-assisted hand rehabilitation for 6 weeks of treatment (Sixty minutes a time, twice a week). The performance was assessed by a assessor for three times (pre-test, post-test, follow up at one month). The outcome measures Fugl-Meyer Assessment-Upper Limb section(FMA-UE),Box and block test(BBT), Maximal voluntary contraction(MVC) of extensor digitorum communis(EDC), Flexor digitorum(FD), Grasp strength, \& ABILHAND-Kids for ADL ability. Collected data will be analyzed with ANOVA test by SPSS version 20.0, and alpha level was set at .05. Our hypothesis are robot-assisted hand rehabilitation with a Gloreha device has positive effects on hand function and the participation of ADL for children with CP.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Robot-assisted Training in Children With CP
NCT06450158
Effect of Robotic Assisted Therapy on Hand Functions, Grip Strength and Proprioception in Children With Hemiplegia
NCT07249866
A Pilot Study of Hand Function in Children With Cerebral Palsy Undergoing Intensive Neurophysiological Rehabilitation
NCT03454412
Use of Low Cost Prostheses to Improve Upper Extremity Function in Children With Cerebral Palsy
NCT03122171
Efficacy of New Protocols in the Treatment of Upper Limb Dysfunctions in Patients With Cerebral Palsy
NCT03048851
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Objective: To investigate the effects of robot-assisted hand rehabilitation with a Gloreha device on hand function and the participation of ADL for children with cerebral palsy(CP).
Five children with CP aged 6 to 18 years were recruited and received 12times of robot-assisted hand rehabilitation for 6 weeks of treatment (Sixty minutes a time, twice a week). The performance was assessed by a assessor for three times (pre-test, post-test, follow up at one month). The outcome measures Fugl-Meyer Assessment-Upper Limb section(FMA-UE),Box and block test(BBT), Maximal voluntary contraction(MVC) of extensor digitorum communis(EDC), Flexor digitorum(FD), grasp strength, \& ABILHAND-Kids for ADL ability. Collected data will be analyzed with ANOVA test by SPSS version 20.0, and alpha level was set at .05. Our hypothesis are robot-assisted hand rehabilitation with a Gloreha device has positive effects on hand function and the participation of ADL for children with CP.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Robotic-assisted intervention
In the Robotic-assisted intervention :12 training sessions of Robot-assisted hand rehabilitation(60 minutes a time, 2 times a week)
Robot-assisted hand rehabilitation
Robot-assisted hand rehabilitation: 20 minute of warm-up exercise and 40 minute of robot-assisted hand exercise intervention. Robot-assisted hand exercises include passive range of motion of hand, bilateral hands task, robot-assisted task, and game task.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Robot-assisted hand rehabilitation
Robot-assisted hand rehabilitation: 20 minute of warm-up exercise and 40 minute of robot-assisted hand exercise intervention. Robot-assisted hand exercises include passive range of motion of hand, bilateral hands task, robot-assisted task, and game task.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Age younger than 18 and older than 6 years old
* Could follow 2 step order instruction
* No Botulinum injection during the recent 6 month and the experiment period
* Chronicity \> 1 years and stable medicine condition
* Could sit steady after the position
Exclusion Criteria
* Individuals with visual or auditory impairment who couldn't see or hear the feedback from the device clearly
6 Years
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Taipei Medical University Shuang Ho Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Jui chi Lin, master
Role: STUDY_CHAIR
Taipei Medical University, Taiwan, R.O.C.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University
Taipei, , Taiwan
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Bax M, Goldstein M, Rosenbaum P, Leviton A, Paneth N, Dan B, Jacobsson B, Damiano D; Executive Committee for the Definition of Cerebral Palsy. Proposed definition and classification of cerebral palsy, April 2005. Dev Med Child Neurol. 2005 Aug;47(8):571-6. doi: 10.1017/s001216220500112x.
Novak I. Evidence-based diagnosis, health care, and rehabilitation for children with cerebral palsy. J Child Neurol. 2014 Aug;29(8):1141-56. doi: 10.1177/0883073814535503. Epub 2014 Jun 22.
Arner M, Eliasson AC, Nicklasson S, Sommerstein K, Hagglund G. Hand function in cerebral palsy. Report of 367 children in a population-based longitudinal health care program. J Hand Surg Am. 2008 Oct;33(8):1337-47. doi: 10.1016/j.jhsa.2008.02.032.
Sakzewski L, Ziviani J, Boyd RN. Efficacy of upper limb therapies for unilateral cerebral palsy: a meta-analysis. Pediatrics. 2014 Jan;133(1):e175-204. doi: 10.1542/peds.2013-0675. Epub 2013 Dec 23.
Varalta V, Picelli A, Fonte C, Montemezzi G, La Marchina E, Smania N. Effects of contralesional robot-assisted hand training in patients with unilateral spatial neglect following stroke: a case series study. J Neuroeng Rehabil. 2014 Dec 5;11:160. doi: 10.1186/1743-0003-11-160.
Sgaggio, E., Joint and functional benefits of a robotic glove for post-stroke patients. publication pending, 2015
Fasoli SE, Fragala-Pinkham M, Hughes R, Hogan N, Krebs HI, Stein J. Upper limb robotic therapy for children with hemiplegia. Am J Phys Med Rehabil. 2008 Nov;87(11):929-36. doi: 10.1097/PHM.0b013e31818a6aa4.
Ming-Juei Chang (2017).Prevalence, healthcare and rehabilitation services utilization in individuals with cerebral palsy.Taiwan Master Master's Thesis
Levitt, S. (2013). Treatment of cerebral palsy and motor delay. John Wiley & Sons.
Ching-Yi Chen,Ching-Chun Li,Jiunn-Horng Kang(2013). Medical Utilization among Patients with Cerebral Palsy, Taiwan Journal of Physical Medicine and Rehabilitation41(4), 225-234.
McHale K, Cermak SA. Fine motor activities in elementary school: preliminary findings and provisional implications for children with fine motor problems. Am J Occup Ther. 1992 Oct;46(10):898-903. doi: 10.5014/ajot.46.10.898.
Asher AV. Handwriting instruction in elementary schools. Am J Occup Ther. 2006 Jul-Aug;60(4):461-71. doi: 10.5014/ajot.60.4.461.
Henderson, A., & Pehoski, C. (Eds.). (2006). Hand function in the child: Foundations for remediation. Elsevier Health Sciences.
Hsieh-Chun Hsieh(2010). Effects of Parent-Child Toy-Playing Activities on the Motor Development of Children with Cerebral Palsy. Ulletin of special education, 35(2), 81-101.
Huang, C. W. (2016). Effectiveness of unilateral versus bilateral intensive training in children with cerebral palsy: a randomized controlled study. Taiwan University Occupational Therapy Research Institute Thesis, 1-82.
Lohse KR, Hilderman CG, Cheung KL, Tatla S, Van der Loos HF. Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLoS One. 2014 Mar 28;9(3):e93318. doi: 10.1371/journal.pone.0093318. eCollection 2014.
Lohse K, Shirzad N, Verster A, Hodges N, Van der Loos HF. Video games and rehabilitation: using design principles to enhance engagement in physical therapy. J Neurol Phys Ther. 2013 Dec;37(4):166-75. doi: 10.1097/NPT.0000000000000017.
Pichierri G, Wolf P, Murer K, de Bruin ED. Cognitive and cognitive-motor interventions affecting physical functioning: a systematic review. BMC Geriatr. 2011 Jun 8;11:29. doi: 10.1186/1471-2318-11-29.
Winkels DG, Kottink AI, Temmink RA, Nijlant JM, Buurke JH. Wii-habilitation of upper extremity function in children with cerebral palsy. An explorative study. Dev Neurorehabil. 2013;16(1):44-51. doi: 10.3109/17518423.2012.713401. Epub 2012 Oct 3.
Acar G, Altun GP, Yurdalan S, Polat MG. Efficacy of neurodevelopmental treatment combined with the Nintendo((R)) Wii in patients with cerebral palsy. J Phys Ther Sci. 2016 Mar;28(3):774-80. doi: 10.1589/jpts.28.774. Epub 2016 Mar 31.
Dobkin BH. Strategies for stroke rehabilitation. Lancet Neurol. 2004 Sep;3(9):528-36. doi: 10.1016/S1474-4422(04)00851-8.
Buerger, S. P., & Hogan, N. (2006, October). Relaxing passivity for human-robot interaction. In Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on (pp. 4570-4575). IEEE.
Volpe BT, Lynch D, Rykman-Berland A, Ferraro M, Galgano M, Hogan N, Krebs HI. Intensive sensorimotor arm training mediated by therapist or robot improves hemiparesis in patients with chronic stroke. Neurorehabil Neural Repair. 2008 May-Jun;22(3):305-10. doi: 10.1177/1545968307311102. Epub 2008 Jan 9.
Pětioký, J. Robot-assisted therapy integrated with virtual reality for rehabilitation of hand function after stroke: a clinical case study. in the 20th ESPRM Congress 2016.
Vanoglio F, Bernocchi P, Mule C, Garofali F, Mora C, Taveggia G, Scalvini S, Luisa A. Feasibility and efficacy of a robotic device for hand rehabilitation in hemiplegic stroke patients: a randomized pilot controlled study. Clin Rehabil. 2017 Mar;31(3):351-360. doi: 10.1177/0269215516642606. Epub 2016 Jul 10.
Lincoln, N. B., Jackson, J. M., & Adams, S. A. (1998). Reliability and revision of the Nottingham Sensory Assessment for stroke patients. Physiotherapy, 84(8), 358-365.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
TMU-JIRB N201711070
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.