Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
NA
80 participants
INTERVENTIONAL
2021-09-25
2025-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
The Effects of Exoskeletal Robot-Assisted Gait Training on Children With Cerebral Palsy: A Pilot Study
NCT05759182
Efficacy Study of an Interactive Robot for the Rehabilitation of the Upper Limb in Children With Cerebral Palsy
NCT01700153
Robotic-assisted Therapy to Improve Manual Dexterity in Children With Cerebral Palsy
NCT02923167
Effectiveness of Robotic Gait Training and Physical Therapy for Children and Youth With Cerebral Palsy
NCT02391324
Effectiveness of a Treatment With the Robot - Assisted Gait Training System Walkbot in Patients With Cerebral Palsy
NCT04329793
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
OTHER
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Experimental Group I
Participants in this group will be between the ages of 7 and 18 years old and have a diagnosis of cerebral palsy. Amadeo will be used to train the more-affected hand of participants in this group. The training will last approximately 1 hour per day for 14 successive days. Participants will be asked to first do active finger and passive finger moving, then receive haptic vibration, and finally play interactive games.
Robot (Amadeo)-assisted Training
Amadeo® is an FDA Class I Exempt hand/finger robot that has the capacity to precisely measure hand/finger functions.
To use Amadeo, a participant will be seated in a chair. The height of the robot arm support will be adjusted to achieve a comfortable position for the participant. One of the participant's arms will be will be placed on the robot arm support. Magnetic finger tips will then be attached to fingers and thumb. After this, fingers and thumb will be connected to the robot finger sliders. To use Amadeo, the movement range and maximal force of each finger will be configured according to the finger's capability. The following four types of function assessments will be performed with Amadeo: Force, range of motion, tone, and spasticity. Each session will last approximately one hour.
Control Group I
Participants in this group will be between the ages of 7 and 18 years old and have a diagnosis of cerebral palsy.
No interventions assigned to this group
Experimental Group II
Participants in this group will be between the ages of 7 and 18 years old and have no history of neurological disorder or brain injury. Amadeo will be used to train the non-dominant hand of participants in this group. The training will last approximately 1 hour per day for 14 successive days. Participants will be asked to first do active finger and passive finger moving, then receive haptic vibration, and finally play interactive games.
Robot (Amadeo)-assisted Training
Amadeo® is an FDA Class I Exempt hand/finger robot that has the capacity to precisely measure hand/finger functions.
To use Amadeo, a participant will be seated in a chair. The height of the robot arm support will be adjusted to achieve a comfortable position for the participant. One of the participant's arms will be will be placed on the robot arm support. Magnetic finger tips will then be attached to fingers and thumb. After this, fingers and thumb will be connected to the robot finger sliders. To use Amadeo, the movement range and maximal force of each finger will be configured according to the finger's capability. The following four types of function assessments will be performed with Amadeo: Force, range of motion, tone, and spasticity. Each session will last approximately one hour.
Control Group II
Participants in this group will be between the ages of 7 and 18 years old and have no history of neurological disorder or brain injury.
No interventions assigned to this group
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Robot (Amadeo)-assisted Training
Amadeo® is an FDA Class I Exempt hand/finger robot that has the capacity to precisely measure hand/finger functions.
To use Amadeo, a participant will be seated in a chair. The height of the robot arm support will be adjusted to achieve a comfortable position for the participant. One of the participant's arms will be will be placed on the robot arm support. Magnetic finger tips will then be attached to fingers and thumb. After this, fingers and thumb will be connected to the robot finger sliders. To use Amadeo, the movement range and maximal force of each finger will be configured according to the finger's capability. The following four types of function assessments will be performed with Amadeo: Force, range of motion, tone, and spasticity. Each session will last approximately one hour.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Classified as high-functioning (I or II) at the Gross Motor Function Classification System (GMFCS)
* Participants in the control group should have no history of neurological disorder or brain injury
Exclusion Criteria
* Genetic syndrome diagnosis
* History of trauma or brain operation
* Inability to sit still
* Metal implants
* Baclofen pump
* Inability or unwillingness of patient or parent/legally authorized representative to give written informed consent
7 Years
18 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Cook Children's Health Care System
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Christos Papadelis, PhD
Role: PRINCIPAL_INVESTIGATOR
Cook Children's Health Care System
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Cook Children's Medical Center
Fort Worth, Texas, United States
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Yeargin-Allsopp M, Van Naarden Braun K, Doernberg NS, Benedict RE, Kirby RS, Durkin MS. Prevalence of cerebral palsy in 8-year-old children in three areas of the United States in 2002: a multisite collaboration. Pediatrics. 2008 Mar;121(3):547-54. doi: 10.1542/peds.2007-1270.
Stanley, F. J., Blair, E., & Alberman, E. (2000). Cerebral palsies: epidemiology and causal pathways (No. 151). Cambridge University Press.
Centers for Disease Control and Prevention (CDC). Economic costs associated with mental retardation, cerebral palsy, hearing loss, and vision impairment--United States, 2003. MMWR Morb Mortal Wkly Rep. 2004 Jan 30;53(3):57-9.
Gorin NC, Coiffier B, Hayat M, Fouillard L, Kuentz M, Flesch M, Colombat P, Boivin P, Slavin S, Philip T. Recombinant human granulocyte-macrophage colony-stimulating factor after high-dose chemotherapy and autologous bone marrow transplantation with unpurged and purged marrow in non-Hodgkin's lymphoma: a double-blind placebo-controlled trial. Blood. 1992 Sep 1;80(5):1149-57.
Van Heest AE, House J, Putnam M. Sensibility deficiencies in the hands of children with spastic hemiplegia. J Hand Surg Am. 1993 Mar;18(2):278-81. doi: 10.1016/0363-5023(93)90361-6.
Cooper J, Majnemer A, Rosenblatt B, Birnbaum R. The determination of sensory deficits in children with hemiplegic cerebral palsy. J Child Neurol. 1995 Jul;10(4):300-9. doi: 10.1177/088307389501000412.
Sanger TD, Kukke SN. Abnormalities of tactile sensory function in children with dystonic and diplegic cerebral palsy. J Child Neurol. 2007 Mar;22(3):289-93. doi: 10.1177/0883073807300530.
Wingert JR, Burton H, Sinclair RJ, Brunstrom JE, Damiano DL. Joint-position sense and kinesthesia in cerebral palsy. Arch Phys Med Rehabil. 2009 Mar;90(3):447-53. doi: 10.1016/j.apmr.2008.08.217.
Ronnqvist L, Rosblad B. Kinematic analysis of unimanual reaching and grasping movements in children with hemiplegic cerebral palsy. Clin Biomech (Bristol). 2007 Feb;22(2):165-75. doi: 10.1016/j.clinbiomech.2006.09.004. Epub 2006 Oct 27.
Wiklund LM, Uvebrant P. Hemiplegic cerebral palsy: correlation between CT morphology and clinical findings. Dev Med Child Neurol. 1991 Jun;33(6):512-23. doi: 10.1111/j.1469-8749.1991.tb14916.x.
Arner M, Eliasson AC, Nicklasson S, Sommerstein K, Hagglund G. Hand function in cerebral palsy. Report of 367 children in a population-based longitudinal health care program. J Hand Surg Am. 2008 Oct;33(8):1337-47. doi: 10.1016/j.jhsa.2008.02.032.
Gordon AM, Bleyenheuft Y, Steenbergen B. Pathophysiology of impaired hand function in children with unilateral cerebral palsy. Dev Med Child Neurol. 2013 Nov;55 Suppl 4:32-7. doi: 10.1111/dmcn.12304.
Sakzewski L, Ziviani J, Boyd R. Systematic review and meta-analysis of therapeutic management of upper-limb dysfunction in children with congenital hemiplegia. Pediatrics. 2009 Jun;123(6):e1111-22. doi: 10.1542/peds.2008-3335. Epub 2009 May 18.
Anttila H, Autti-Ramo I, Suoranta J, Makela M, Malmivaara A. Effectiveness of physical therapy interventions for children with cerebral palsy: a systematic review. BMC Pediatr. 2008 Apr 24;8:14. doi: 10.1186/1471-2431-8-14.
Cipriany-Dacko LM, Innerst D, Johannsen J, Rude V. Interrater reliability of the Tinetti Balance Scores in novice and experienced physical therapy clinicians. Arch Phys Med Rehabil. 1997 Oct;78(10):1160-4. doi: 10.1016/s0003-9993(97)90145-3.
Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008 Feb;51(1):S225-39. doi: 10.1044/1092-4388(2008/018).
Koeneke S, Lutz K, Herwig U, Ziemann U, Jancke L. Extensive training of elementary finger tapping movements changes the pattern of motor cortex excitability. Exp Brain Res. 2006 Sep;174(2):199-209. doi: 10.1007/s00221-006-0440-8. Epub 2006 Apr 8.
Kwakkel G. Impact of intensity of practice after stroke: issues for consideration. Disabil Rehabil. 2006 Jul 15-30;28(13-14):823-30. doi: 10.1080/09638280500534861.
Majewska AK, Sur M. Plasticity and specificity of cortical processing networks. Trends Neurosci. 2006 Jun;29(6):323-9. doi: 10.1016/j.tins.2006.04.002. Epub 2006 May 11.
Gilliaux M, Renders A, Dispa D, Holvoet D, Sapin J, Dehez B, Detrembleur C, Lejeune TM, Stoquart G. Upper limb robot-assisted therapy in cerebral palsy: a single-blind randomized controlled trial. Neurorehabil Neural Repair. 2015 Feb;29(2):183-92. doi: 10.1177/1545968314541172. Epub 2014 Jul 11.
Wu YN, Hwang M, Ren Y, Gaebler-Spira D, Zhang LQ. Combined passive stretching and active movement rehabilitation of lower-limb impairments in children with cerebral palsy using a portable robot. Neurorehabil Neural Repair. 2011 May;25(4):378-85. doi: 10.1177/1545968310388666. Epub 2011 Feb 22.
Krebs HI, Ladenheim B, Hippolyte C, Monterroso L, Mast J. Robot-assisted task-specific training in cerebral palsy. Dev Med Child Neurol. 2009 Oct;51 Suppl 4:140-5. doi: 10.1111/j.1469-8749.2009.03416.x.
Colomera JA, Nahuelhual P. [Effectiveness of robotic assistance for gait training in children with cerebral palsy. a systematic review]. Rehabilitacion (Madr). 2020 Apr-Jun;54(2):107-115. doi: 10.1016/j.rh.2019.12.001. Epub 2020 Jan 27. Spanish.
Wu J, Cheng H, Zhang J, Yang S, Cai S. Robot-Assisted Therapy for Upper Extremity Motor Impairment After Stroke: A Systematic Review and Meta-Analysis. Phys Ther. 2021 Apr 4;101(4):pzab010. doi: 10.1093/ptj/pzab010.
Keizer D, Fael D, Wierda JM, van Wijhe M. Quantitative sensory testing with Von Frey monofilaments in patients with allodynia: what are we quantifying? Clin J Pain. 2008 Jun;24(5):463-6. doi: 10.1097/AJP.0b013e3181673b80.
Krumlinde-sundholm, L., & Eliasson, A. C. (2003). Development of the Assisting Hand Assessment: a Rasch-built measure intended for children with unilateral upper limb impairments. Scandinavian Journal of Occupational Therapy, 10(1), 16-26.
Manual Ability Classification System (MACS) http://www.macs.nu/
Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci. 2011;2011:879716. doi: 10.1155/2011/879716. Epub 2011 Apr 13.
Gramfort A, Papadopoulo T, Olivi E, Clerc M. OpenMEEG: opensource software for quasistatic bioelectromagnetics. Biomed Eng Online. 2010 Sep 6;9:45. doi: 10.1186/1475-925X-9-45.
Lin FH, Witzel T, Ahlfors SP, Stufflebeam SM, Belliveau JW, Hamalainen MS. Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates. Neuroimage. 2006 May 15;31(1):160-71. doi: 10.1016/j.neuroimage.2005.11.054. Epub 2006 Mar 6.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
1R218D090549-02
Identifier Type: OTHER_GRANT
Identifier Source: secondary_id
2021-012
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.