The Effects of Exoskeletal Robot-Assisted Gait Training on Children With Cerebral Palsy: A Pilot Study
NCT ID: NCT05759182
Last Updated: 2025-06-12
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
10 participants
INTERVENTIONAL
2024-09-02
2024-11-28
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
The Effect of Robot-assisted Gait Training on Gait Ability in Children With Cerebral Palsy Through Changing Gait Speed
NCT04909151
Muscle Synergies During Gait in Children With Cerebral Palsy Undergoing Robot-assisted Gait Therapy
NCT06156969
Effects of WALKBOT-G Robot-assisted Gait Training on Anticipatory Posture Adjustment Function and Balance With Cerebral Palsy
NCT04884386
Robot-assisted Training in Children With CP
NCT06450158
Home-based Gait Rehabilitation Service Using the Insole-type Gait Analysis Device for Children With Cerebral Palsy
NCT06461923
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Cerebral Palsy is characterized by motor impairment that results in decreased muscle strength in certain muscles, causing muscle weakness, stiffness, contractures, and fatigue(2, 3). These features lead to decreased coordination between the muscles required to perform motor skills, which prevents the heel strike during gait(4), resulting in decreased motor control of body segments, decreased stride length, and increased gait instability, all of which contribute to poor gait quality(5, 6). Gait training, one of the main rehabilitation goals to improve the quality of life for children with Cerebral Palsy, aims to improve standing, walking, running, and hopping motor skills to help them live independently(7, 8).
Various types of robotic gait training devices have been developed to treat children with Cerebral Palsy. They are categorized into two types, exoskeleton and end-effector, depending on their principle of operation. The exoskeleton type moves joints such as hip, knee, and ankle joints to match the gait cycle. On the other hand, the end-effector type moves the foot by moving the footplate on which the body is supported(9).
Robot-assisted gait training (RAGT), an emerging area of rehabilitation, was initially developed for adults using driven gait orthoses (DGOs)(10, 11). Since the 21st century, several studies have reported that robot-assisted gait training improves walking performance in people with stroke or spinal cord injury. One systematic literature review reported that it is effective for the above conditions, but there is insufficient evidence for traumatic brain injury or Parkinson's disease(12, 13).
The robotic gait training device Lokomat (Hocoma, AG, Volketswil, Switzerland) has released a pediatric version of the gait training robot(14-16) to start gait training for children around four years of age. The usability of robotic gait training has been tested in the neurorehabilitation of pediatric diseases over the past several years. It was recently found that robotic gait training is a safe intervention method for children(17, 18). However, there is currently a significant lack of evidence regarding the clinical effectiveness of robotic gait training for various pediatric patient populations.
A recent study conducted at a university hospital reported improvements in gross motor function, gait speed, and endurance with reduced energy expenditure following robotic gait training (Angel-legs, ANGEL ROBOTICS Co., Ltd., Seoul, Korea) for three children with cerebral palsy (ages 9, 13, and 16). Additionally, for two children with ataxic cerebral palsy (ages 11 and 12), combining conventional intensive rehabilitation therapy with robotic gait training led to reported improvements in gross motor function, functional balance, and walking ability(20).
However, there is still a lack of evidence on robotic gait training for various pediatric diseases, and no studies have been conducted to demonstrate its effectiveness through various evaluations. Therefore, we aimed to investigate the effects of exoskeleton robotic gait training on activities of daily living, gross motor function assessment, balance, and walking ability in adolescents with Cerebral Palsy.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
DEVICE_FEASIBILITY
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Bambini Teens Training
Ten participants will complete 30-minute sessions twice a week over six weeks, totalling 12 interventions.
Powered Exoskeleton Gait Training
A trained medical professional will adjust the exoskeleton to fit each participant and tailor the program(sit to stand, stand to sit, standing balance and weight shift, walk in place, walk forward) according to their physical condition and specific needs. Based on each participant's walking ability, appropriate safety devices (such as crutches, canes, or a harness) will be used during the intervention.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Powered Exoskeleton Gait Training
A trained medical professional will adjust the exoskeleton to fit each participant and tailor the program(sit to stand, stand to sit, standing balance and weight shift, walk in place, walk forward) according to their physical condition and specific needs. Based on each participant's walking ability, appropriate safety devices (such as crutches, canes, or a harness) will be used during the intervention.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. Patients with gait disturbances due to lower limb weakness.
Exclusion Criteria
2. Patients with severe lower limb spasticity scoring 3 or higher on the Modified Ashworth Scale.
3. Patients with severe gait disorders, scoring at or below Level 1 on the Functional Ambulation Category (FAC).
4. Patients with lower limb contractures, deformities, skin issues, neurological comorbidities other than cerebral palsy, or cardiovascular and other medical issues that may affect the ability to wear and walk with a robotic exoskeleton device.
5. Patients who refuse to participate in the study.
3 Years
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Hanyang University
OTHER
COSMO ROBOTICS CO., Ltd
INDUSTRY
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Kyuhoon Lee, M.D.
Role: PRINCIPAL_INVESTIGATOR
Department of Rehabilitation Medicine, Hanyang University Seoul Hospital
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Hanyang University Seoul Hospital
Seongdong, Seoul, South Korea
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, Dan B, Jacobsson B. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007 Feb;109:8-14.
Houlihan CM. Walking function, pain, and fatigue in adults with cerebral palsy. Dev Med Child Neurol. 2009 May;51(5):338-9. doi: 10.1111/j.1469-8749.2008.03253.x. No abstract available.
Opheim A, Jahnsen R, Olsson E, Stanghelle JK. Walking function, pain, and fatigue in adults with cerebral palsy: a 7-year follow-up study. Dev Med Child Neurol. 2009 May;51(5):381-8. doi: 10.1111/j.1469-8749.2008.03250.x. Epub 2008 Feb 3.
Goldstein M, Harper DC. Management of cerebral palsy: equinus gait. Dev Med Child Neurol. 2001 Aug;43(8):563-9. doi: 10.1111/j.1469-8749.2001.tb00762.x. No abstract available.
Pirpiris M, Wilkinson AJ, Rodda J, Nguyen TC, Baker RJ, Nattrass GR, Graham HK. Walking speed in children and young adults with neuromuscular disease: comparison between two assessment methods. J Pediatr Orthop. 2003 May-Jun;23(3):302-7.
Sutherland DH, Davids JR. Common gait abnormalities of the knee in cerebral palsy. Clin Orthop Relat Res. 1993 Mar;(288):139-47.
Damiano DL. Activity, activity, activity: rethinking our physical therapy approach to cerebral palsy. Phys Ther. 2006 Nov;86(11):1534-40. doi: 10.2522/ptj.20050397.
Garvey MA, Giannetti ML, Alter KE, Lum PS. Cerebral palsy: new approaches to therapy. Curr Neurol Neurosci Rep. 2007 Mar;7(2):147-55. doi: 10.1007/s11910-007-0010-x.
Morone G, Paolucci S, Cherubini A, De Angelis D, Venturiero V, Coiro P, Iosa M. Robot-assisted gait training for stroke patients: current state of the art and perspectives of robotics. Neuropsychiatr Dis Treat. 2017 May 15;13:1303-1311. doi: 10.2147/NDT.S114102. eCollection 2017.
Colombo G, Joerg M, Schreier R, Dietz V. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000 Nov-Dec;37(6):693-700.
Hesse S, Schmidt H, Werner C, Bardeleben A. Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Curr Opin Neurol. 2003 Dec;16(6):705-10. doi: 10.1097/01.wco.0000102630.16692.38.
Tefertiller C, Pharo B, Evans N, Winchester P. Efficacy of rehabilitation robotics for walking training in neurological disorders: a review. J Rehabil Res Dev. 2011;48(4):387-416. doi: 10.1682/jrrd.2010.04.0055.
Mayr A, Kofler M, Quirbach E, Matzak H, Frohlich K, Saltuari L. Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil Neural Repair. 2007 Jul-Aug;21(4):307-14. doi: 10.1177/1545968307300697. Epub 2007 May 2.
Husemann B, Muller F, Krewer C, Heller S, Koenig E. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke. 2007 Feb;38(2):349-54. doi: 10.1161/01.STR.0000254607.48765.cb. Epub 2007 Jan 4.
Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil. 2005 Apr;86(4):672-80. doi: 10.1016/j.apmr.2004.08.004.
Meyer-Heim A, Borggraefe I, Ammann-Reiffer C, Berweck S, Sennhauser FH, Colombo G, Knecht B, Heinen F. Feasibility of robotic-assisted locomotor training in children with central gait impairment. Dev Med Child Neurol. 2007 Dec;49(12):900-6. doi: 10.1111/j.1469-8749.2007.00900.x.
Borggraefe I, Klaiber M, Schuler T, Warken B, Schroeder SA, Heinen F, Meyer-Heim A. Safety of robotic-assisted treadmill therapy in children and adolescents with gait impairment: a bi-centre survey. Dev Neurorehabil. 2010;13(2):114-9. doi: 10.3109/17518420903321767.
Kim SK, Park D, Yoo B, Shim D, Choi JO, Choi TY, Park ES. Overground Robot-Assisted Gait Training for Pediatric Cerebral Palsy. Sensors (Basel). 2021 Mar 16;21(6):2087. doi: 10.3390/s21062087.
Yoo M, Ahn JH, Park ES. The Effects of Over-Ground Robot-Assisted Gait Training for Children with Ataxic Cerebral Palsy: A Case Report. Sensors (Basel). 2021 Nov 26;21(23):7875. doi: 10.3390/s21237875.
Hwang EO, Oh DW, Kim SY. Community ambulation in patients with chronic post-stroke hemiparesis: Comparison of walking variables in five different community situations. Korean Acad Phys Ther Sci. 2009;16(1):31-9.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
EXO-CIP-001
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.