Assessment of Neural and Motor Performance

NCT ID: NCT04241588

Last Updated: 2024-09-03

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

WITHDRAWN

Study Classification

OBSERVATIONAL

Study Start Date

2022-11-22

Study Completion Date

2022-11-22

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The neural basis underlying motor performance in children using a prosthesis has been severely understudied resulting in minimal empirical evidence. With the use of low-cost 3D printed prosthetics, the purpose of this study is to examine the assessment of primary motor cortex activation and the representation of gray and white matter in a child with congenital limb loss. This will be accomplished by cross-examining results from fNIR and Anatomical Magnetic Resonance Imaging (MRI). The proposed research uses anatomical MRI to test if children with unilateral congenital partial hand reductions demonstrate less gray and white matter in the motor representation zones. Moreover, the proposed research will focus on an assessment of motor performance using continuous and discrete tasks with a robotic manipulandum. Assessment of motor performance and neural networking are critical to increasing our limited knowledge of how the child increases the number of motor repertoires.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

The investigators anticipate enrolling a total of 40children between 3 and 18 years of age. Specifically, two groups of children will be recruited; children with unilateral congenital upper-limb reductions (n=20) and age and sex-matched control group of typically developing children (n=20). Considering the effect size from preliminary data and to account for a 10% drop-out rate, a total sample of 40 subjects will provide 80% power to detect a true standardized effect size.

All subjects including controls will attend four data collection sessions that will include: one fitting session, second to obtain a baseline, the third visit will be one month after baseline, and the final visit will be four months after baseline. Participants will attend an initial measurement session to take a 3D scan of the affected and nonaffected upper limbs as well as several anthropometric measurements. During this session, three pictures of the upper limbs will be taken which will also be used to verify the fit the prostheses in a process previously validated by our research team. The subjects will then perform an anatomical MRI scan. The MRI scan is not a clinical scan intended for diagnostic or therapeutic purposes. The research participants will then be asked to come for two testing visits. During the first testing visit (visit 1), participants will be fitted with the prosthesis and required adjustments to improve comfort and avoid pressure point will be performed. After fitting the prosthesis, participants will be given 15 minutes to explore the prosthesis and adjust the tensioner dial to regulate the opening of the fingers to perform the Box and Block Test. After the training and accommodation period, participants will be asked to perform 3 trials of flexion and extension of each wrist with and without the prosthesis and 3 different trials of the Box and Blocks Test for each hand while monitoring neural activity of the primary motor cortex using a fNIRS device. After a brief period of rest and encouragement, the subject will be asked to perform eight trials of discrete (four trials) and continuous (four trials) tasks using a robotic manipulandum (InMotion Arm Robot, Interactive Motion Technologies, Inc., Cambridge, MA, USA). These tasks have been previously used for the assessment of changes in upper-limb performance and the effect of different treatments in the recovering of motor function of children with acquired or congenital hemiparesis, ataxia, and hemiparesis. This data collection performed at baseline will be performed again one and four months after baseline. Eight weeks after the baseline measurements, participants will be asked to visit our laboratory for a second time and perform the same assessments. Between the testing visits, participants will be encouraged to use the prosthesis for a minimum of 2 hours a day.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Amniotic Band Syndrome Upper Extremity Deformities, Congenital

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

CASE_CONTROL

Study Time Perspective

PROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

3D prostheses users

Children with unilateral congenital upper-limb reductions

3D Printed Upper-limb Prosthesis

Intervention Type DEVICE

The fingers and thumb were made of polylactic acid polymer manufactured using industrial 3D printers. The palm, socket, forearm brace, and leveraging the structure were made of polylactic acid which has properties similar to thermoplastic that facilitate post-manufacturing adjustments. Elastic cords placed inside the dorsal aspect of the fingers provided passive finger extension. Finger flexion was driven by non-elastic cords along the palmar surface of each finger and was activated through 20-30 degrees of wrist or elbow flexion. The device will be given to participants so that they may practice using the device at home.

Typically Developing Children

Age- and sex-matched control group of typically developing children.

Control

Intervention Type OTHER

A 3D printed hand with be fitted to simulate a prosthesis.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

3D Printed Upper-limb Prosthesis

The fingers and thumb were made of polylactic acid polymer manufactured using industrial 3D printers. The palm, socket, forearm brace, and leveraging the structure were made of polylactic acid which has properties similar to thermoplastic that facilitate post-manufacturing adjustments. Elastic cords placed inside the dorsal aspect of the fingers provided passive finger extension. Finger flexion was driven by non-elastic cords along the palmar surface of each finger and was activated through 20-30 degrees of wrist or elbow flexion. The device will be given to participants so that they may practice using the device at home.

Intervention Type DEVICE

Control

A 3D printed hand with be fitted to simulate a prosthesis.

Intervention Type OTHER

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

Prosthesis use

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Age 3-80 years.
* Individuals missing any digits, hand, arm, shoulder.
* Any dysfunction of the upper limbs.

Exclusion Criteria

* Participants who are outside of age range.
* Participants with upper extremity injury within the past month.
* Medical conditions which would be contraindications to wear a prosthetic or assistive device, Such as skin abrasions and musculoskeletal injuries in the upper limbs.
Minimum Eligible Age

3 Years

Maximum Eligible Age

80 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

University of Nebraska

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Jorge M Zuniga, PhD

Role: PRINCIPAL_INVESTIGATOR

University of Nebraska

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

0589-19-FB

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Walking Inclined Plane
NCT02988557 COMPLETED NA