The Muscle in Children With Cerebral Palsy - Longitudinal Exploration of Microscopic Muscle Structure.

NCT ID: NCT05497609

Last Updated: 2022-08-11

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

RECRUITING

Total Enrollment

50 participants

Study Classification

OBSERVATIONAL

Study Start Date

2006-01-15

Study Completion Date

2027-12-15

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Cerebral palsy (CP) is a motor impairment due to a brain malformation or a brain lesion before the age of two. Spasticity, hypertonus in flexor muscles, dyscoordination and an impaired sensorimotor control are cardinal symptoms. The brain lesion is non-progressive, but the flexor muscles of the limbs will during adolescence become relatively shorter and shorter (contracted), forcing the joints into a progressively flexed position. This will worsen the positions of already paretic and malfunctioning arms and legs. Due to bending forces across the joints, bony malformations will occur, worsening the function even further. Since about 25 years a combination treatment with intramuscular botulinum toxin injections, braces and training has had a tremendous and increasing popularity, although lasting long-term clinical advantage is not yet proven.

Muscle morphology of the biceps brachii and the gastrocnemius muscles:

* The hypothesis is that care as usual, i.e. training and splinting sessions with botulinum toxin as adjuvant treatment, will reduce (normalize) the expression of the fast fatigable myosin heavy chain MyHC IIx and increase the expression of developmental myosin, as a possible sign of growth. As the biceps in the arm is used irregularly and voluntarily, and the gastrocnemius is activated during automated gait, the adaptations of those muscles will be different. Methods: Baseline muscle biopsies: Percutaneous biopsies are taken just before the first intramuscular botulinum toxin injection is given. The doses and the intervals for the botulinum toxin treatment will follow clinical routines. Biopsies 4-6 months, 12 months and 24 months after the first botulinum toxin injection: The exact same procedure as above will be performed, but the biopsies will be taken 2 cm distant, medial or lateral, from previous biopsy sites
* Significance:. More knowledge is warranted regarding the actual molecular process in the muscle leading to a contracture, and its relation to the constant communication with the injured central nervous system. This study will give answers that could result in new, early prophylactic treatment of joint movement restrictions and motor impairment in children with CP.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Cerebral palsy (CP) is a motor impairment due to a brain malformation or a brain lesion before the age of two. Spasticity, hypertonus in flexor muscles, dyscoordination and an impaired sensorimotor control are cardinal symptoms. The brain lesion is non-progressive, but the flexor muscles of the limbs will during adolescence become relatively shorter and shorter (contracted), forcing the joints into a progressively flexed position. This will worsen the positions of already paretic and malfunctioning arms and legs. Due to bending forces across the joints, bony malformations will occur, worsening the function even further. Currently, the initial treatment of choice is the use of braces, which diminishes the shortening somewhat. Since about 25 years a combination treatment with intramuscular botulinum toxin injections, braces and training has had a tremendous and increasing popularity, although lasting long-term clinical advantage is not yet proven.

Muscle morphology of the biceps brachii and the gastrocnemius muscles:

• The hypothesis is that care as usual, i.e. training and splinting sessions with botulinum toxin as adjuvant treatment, will reduce (normalize) the expression of the fast fatigable myosin heavy chain MyHC IIx and increase the expression of developmental myosin, as a possible sign of growth. As the biceps in the arm is used irregularly and voluntarily, and the gastrocnemius is activated during automated gait, the adaptations of those muscles will be different. Methods: Baseline muscle biopsies: Percutaneous biopsies from the biceps brachii and the gastrocnemius muscles are taken just before the first intramuscular botulinum toxin injection is given. The doses and the intervals for the botulinum toxin treatment will follow clinical routines. Training of the leg and arm will after the injections be performed with the help of physiotherapists and occupational therapists. Biopsies 4-6 months, 12 months and 24 months after the first botulinum toxin injection: The exact same procedure as above will be performed, but the biopsies will be taken 2 cm distant, medial or lateral, from previous biopsy sites. The muscle specimens are snap frozen and stored at -80°C until analyzed. The expression of different myosin heavy chain (MyHC) isoforms is assessed by using the monoclonal antibodies (mAb) N2.261, mAb A4.840 against slow MyHC I, mAb F1.652 against embryonic MyHC, and mAb NCL-MHCn against fetal (=neonatal) MyHC)(Tiger, Champliaud et al. 1997; Wewer, Thornell et al. 1997). Satellite cells will be identified with mAb against N-CAM (neural cell adhesion molecule). The fibers are typed according to the content of MyHCs.

Significance: Children with cerebral palsy have a motor impairment and progressive contractures that we often treat late; when tendon and bony surgery are the only options to realign the joints. Our aim is to treat the muscles early, so that the contractures and the bony malformations won't occur in the first place. Training and splints, with botulinum toxin as adjuvant treatment, is a very popular regime with this aim, but the long-term effect on muscle tissue and function is not yet known. This study will elucidate the effect during a 2-year period, and no such studies have yet been published. More knowledge is warranted regarding the actual molecular process in the muscle leading to a contracture, and its relation to the constant communication with the injured central nervous system. This study will give answers that could result in new, early prophylactic treatment of joint movement restrictions and motor impairment in children with CP.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Cerebral Palsy Muscle Contraction Muscle Spasticity

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

PROSPECTIVE

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

no intervention. Care as ususal

No intervention

Intervention Type OTHER

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Cerebral Palsy, Aquired Brain Injury

Exclusion Criteria

* Progressive neural disease
Minimum Eligible Age

2 Years

Maximum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Eva Ponten

OTHER_GOV

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Eva Ponten

MD PhD Ass Prof

Responsibility Role SPONSOR_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Eva M Pontén, MD PhD

Role: PRINCIPAL_INVESTIGATOR

Karolinska Institutet

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Karolinska University Hospital

Stockholm, , Sweden

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

Sweden

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Eva M Pontén, MD PhD

Role: CONTACT

+46706303052

Alexandra Palmcrantz

Role: CONTACT

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Eva M Pontén, MD PhD

Role: primary

0706303052

Alexandra Palmcrantz, PT

Role: backup

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

BTX muskel CP

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.