Air Pollution, Epigenetics and Cardiovascular Health: A Human Intervention Trial
NCT ID: NCT01864824
Last Updated: 2017-05-11
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
PHASE1
10 participants
INTERVENTIONAL
2013-06-30
2014-07-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Specifically for this study, the methyl donor supplement has been made by Jamieson Laboratories, and consists of 50mg Vitamin B6 and 1 mg Vitamin B12, (both within Health Canada approved limits) and 2.5 mg folic acid. The non-vitamin ingredients are those commonly used in pill formation. However, the folic acid concentration is 2.5mg, which is above the 1.0mg limit set by Health Canada for a natural health product. This concentration, however, has been used in previous academic studies safely and effectively, and was also formulated by Jamieson Laboratories. (ClinicalTrials.gov number, NCT00106886; Current Controlled Trials number, ISRCTN14017017. HOPE2 study).
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Reducing the Pro-ischaemic Effects of Air Pollution Exposure Using a Simple Face Mask
NCT00809653
Reducing Particulate Matter-associated Cardiovascular Health Effects for Seniors
NCT04103346
Responses to Exposure to Low Levels of Concentrated Ambient Particles in Healthy Young Adults
NCT03232086
Anti-pollution Effects of AP Green Tea Extracts
NCT04340375
Air Pollution and Implantable Cardioverter Defibrillators
NCT00015574
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
SINGLE_GROUP
OTHER
SINGLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
methyl donor
Methyl donor is made up of:
2.5 mg of folic acid, 50 mg of vitamin B6, and 1 mg of vitamin B12 The design will include a 2 week placebo run-in followed by a baseline blank study (2-hrs exposure to medical air) to provide benchmarks for all assessed variables. Participants will then receive a 4-week placebo treatment before the first PM2.5 exposure study. A 4-week methyl-donor treatment (Dose: 2.5 mg of folic acid, 50 mg of vitamin B6, and 1 mg of vitamin B12 once a day) will precede the 2nd PM2.5 exposure.
methyl donor
The design will include a 2 week placebo run-in followed by a baseline blank study (2-hrs exposure to medical air) to provide benchmarks for all assessed variables. Participants will then receive a 4-week placebo treatment before the first PM2.5 exposure study. A 4-week methyl-donor treatment (Dose: 2.5 mg of folic acid, 50 mg of vitamin B6, and 1 mg of vitamin B12 once a day) will precede the 2nd PM2.5 exposure.
placebo
placebo: The design will include a 2 week placebo run-in followed by a baseline blank study (2-hrs exposure to medical air) to provide benchmarks for all assessed variables. Participants will then receive a 4-week placebo treatment before the first PM2.5 exposure study. A 4-week methyl-donor treatment (Dose: 2.5 mg of folic acid, 50 mg of vitamin B6, and 1 mg of vitamin B12 once a day) will precede the 2nd PM2.5 exposure.
Placebo
Placebo
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
methyl donor
The design will include a 2 week placebo run-in followed by a baseline blank study (2-hrs exposure to medical air) to provide benchmarks for all assessed variables. Participants will then receive a 4-week placebo treatment before the first PM2.5 exposure study. A 4-week methyl-donor treatment (Dose: 2.5 mg of folic acid, 50 mg of vitamin B6, and 1 mg of vitamin B12 once a day) will precede the 2nd PM2.5 exposure.
Placebo
Placebo
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Age 18-60 years old
* Non-smoker
* must be able to fast 8 hours prior to exposure visits and for a further 4 hours during the exposure
Exclusion Criteria
* Lipid abnormalities
* Asthma or respiratory disease
* Hypertension (Bp\> 140/90) or taking any blood pressure drug
* Known cardiac disease
* abnormal homocysteine or glucose levels
18 Years
60 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Toronto
OTHER
Unity Health Toronto
OTHER
Harvard School of Public Health (HSPH)
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Andrea Baccarelli
MD, PHD, MPH
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Andrea Baccarelli, MD PHD MPH
Role: PRINCIPAL_INVESTIGATOR
HSPH
Frances Silverman, PHD
Role: STUDY_DIRECTOR
Unity Health Toronto
Diane R. Gold, MD
Role: STUDY_CHAIR
HSPH
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Gage Occupational and Environmental Health St. Michael's Hospital/University of Toronto
Toronto, Ontario, Canada
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Adar SD, Gold DR, Coull BA, Schwartz J, Stone PH, Suh H. Focused exposures to airborne traffic particles and heart rate variability in the elderly. Epidemiology. 2007 Jan;18(1):95-103. doi: 10.1097/01.ede.0000249409.81050.46.
Zhong J, Trevisi L, Urch B, Lin X, Speck M, Coull BA, Liss G, Thompson A, Wu S, Wilson A, Koutrakis P, Silverman F, Gold DR, Baccarelli AA. B-vitamin Supplementation Mitigates Effects of Fine Particles on Cardiac Autonomic Dysfunction and Inflammation: A Pilot Human Intervention Trial. Sci Rep. 2017 Apr 3;7:45322. doi: 10.1038/srep45322.
Zhong J, Karlsson O, Wang G, Li J, Guo Y, Lin X, Zemplenyi M, Sanchez-Guerra M, Trevisi L, Urch B, Speck M, Liang L, Coull BA, Koutrakis P, Silverman F, Gold DR, Wu T, Baccarelli AA. B vitamins attenuate the epigenetic effects of ambient fine particles in a pilot human intervention trial. Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):3503-3508. doi: 10.1073/pnas.1618545114. Epub 2017 Mar 13.
Zhong J, Urch B, Speck M, Coull BA, Koutrakis P, Thorne PS, Scott J, Liu L, Brook RD, Behbod B, Gibson H, Silverman F, Mittleman MA, Baccarelli AA, Gold DR. Endotoxin and beta-1,3-d-Glucan in Concentrated Ambient Particles Induce Rapid Increase in Blood Pressure in Controlled Human Exposures. Hypertension. 2015 Sep;66(3):509-16. doi: 10.1161/HYPERTENSIONAHA.115.05342. Epub 2015 Jun 29.
Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC Jr, Whitsel L, Kaufman JD; American Heart Association Council on Epidemiology and Prevention, Council on the Kidney in Cardiovascular Disease, and Council on Nutrition, Physical Activity and Metabolism. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation. 2010 Jun 1;121(21):2331-78. doi: 10.1161/CIR.0b013e3181dbece1. Epub 2010 May 10.
O'Toole TE, Conklin DJ, Bhatnagar A. Environmental risk factors for heart disease. Rev Environ Health. 2008 Jul-Sep;23(3):167-202. doi: 10.1515/reveh.2008.23.3.167.
Zanobetti A, Canner MJ, Stone PH, Schwartz J, Sher D, Eagan-Bengston E, Gates KA, Hartley LH, Suh H, Gold DR. Ambient pollution and blood pressure in cardiac rehabilitation patients. Circulation. 2004 Oct 12;110(15):2184-9. doi: 10.1161/01.CIR.0000143831.33243.D8. Epub 2004 Oct 4.
Brook RD, Rajagopalan S. Particulate matter, air pollution, and blood pressure. J Am Soc Hypertens. 2009 Sep-Oct;3(5):332-50. doi: 10.1016/j.jash.2009.08.005.
Brook RD, Bard RL, Burnett RT, Shin HH, Vette A, Croghan C, Phillips M, Rodes C, Thornburg J, Williams R. Differences in blood pressure and vascular responses associated with ambient fine particulate matter exposures measured at the personal versus community level. Occup Environ Med. 2011 Mar;68(3):224-30. doi: 10.1136/oem.2009.053991. Epub 2010 Oct 8.
Liu L, Ruddy T, Dalipaj M, Poon R, Szyszkowicz M, You H, Dales RE, Wheeler AJ. Effects of indoor, outdoor, and personal exposure to particulate air pollution on cardiovascular physiology and systemic mediators in seniors. J Occup Environ Med. 2009 Sep;51(9):1088-98. doi: 10.1097/JOM.0b013e3181b35144.
O'Neill MS, Veves A, Zanobetti A, Sarnat JA, Gold DR, Economides PA, Horton ES, Schwartz J. Diabetes enhances vulnerability to particulate air pollution-associated impairment in vascular reactivity and endothelial function. Circulation. 2005 Jun 7;111(22):2913-20. doi: 10.1161/CIRCULATIONAHA.104.517110. Epub 2005 May 31.
Baccarelli A, Cassano PA, Litonjua A, Park SK, Suh H, Sparrow D, Vokonas P, Schwartz J. Cardiac autonomic dysfunction: effects from particulate air pollution and protection by dietary methyl nutrients and metabolic polymorphisms. Circulation. 2008 Apr 8;117(14):1802-9. doi: 10.1161/CIRCULATIONAHA.107.726067. Epub 2008 Mar 31.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.