Association Between EIT and CT During PEEP Titration in Patients With Acute Respiratory Failure
NCT ID: NCT07175194
Last Updated: 2025-09-19
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
NOT_YET_RECRUITING
30 participants
OBSERVATIONAL
2025-12-01
2027-06-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Mechanical ventilation can save the lives of patients with ARF. However, if used improperly, it can exacerbate lung disease and worsen outcomes (Slutsky et al.).
Despite decades of animal and clinical research, it remains unclear how to establish the positive end-expiratory pressure (PEEP) during mechanical ventilation to reduce the risk of lung damage. Several methods have been suggested, but none have consistently proven superior to the others (Sahetya et al.).
As part of their routine clinical practice, the investigators study the responses to different PEEP levels of patients with ARF undergoing mechanical ventilation by integrating information from various techniques, each examining different aspects of lung morphology and physiology. The methods the investigators use include lung computed tomography (CT) and electrical impedance tomography (EIT). Lung CT is the reference technique for measuring the morphological response to PEEP (Gattinoni et al.). It quantifies the volume of the hyperinflated and non-aerated lung, both of which are related to the risk of mechanical ventilation causing damage (Slutsky et al.). Lung EIT monitors the functional response to PEEP in terms of changes in regional compliance across different PEEP levels. Allegedly, an increase in compliance when PEEP is decreased reveals overdistention, the functional correlate of (worrisome) hyperinflation, at the higher PEEP. A decrease in compliance when PEEP is decreased signals new collapse, the functional correlate of (worrisome) loss of aeration (Franchineau et al.).
In the Unit where the investigators work, patients with ARF treated with mechanical ventilation are routinely studied as follows. First, a lung CT with a PEEP of 20 cmH2O and then of 5 cmH2O is obtained. Thereafter, a decremental PEEP test is performed with the EIT, where PEEP is decreased from 20 cmH2O down to 5 cmH2O in steps of 2 or 3 cmH2O. Finally, results are analyzed and compared offline.
At the lung CT, decreasing PEEP from 20 to 5 cmH2O is always associated with some decrease in the volume of the hyperinflated lung and some increase in the volume of the non-aerated lung. However, the magnitude of these two effects varies among individuals, and the net response may be defined as the difference between those two competing effects. If the decrease in the volume of the hyperinflated lung is greater than the increase in the volume of the non-aerated lung, the overall response (i.e., less hyperinflation) can be considered positive. PEEP should then be set closer to 5 than to 20 cmH2O. Diversely, if the decrease in the volume of the hyperinflated lung is smaller than the increase in the volume of the non-aerated lung, the overall response (i.e., more loss of aeration) can be considered negative. PEEP should then be set closer to 20 cmH2O (Protti et al.). Similarly, at the lung EIT, decreasing PEEP from 20 to 5 cmH2O is always associated with compliance improvement in some regions (i.e., less overdistension) and worsening in others (i.e., more collapse). Again, the magnitude of these two opposite effects varies among individuals. According to most experts on lung EIT, PEEP should be set at the level where both overdistension and collapse are minimized (the so-called "best" PEEP) (Jonkman et al.).
Lung CT requires transfer to the radiology unit, exposure of the patient to radiation, and complex analysis offline. By contrast, lung EIT is virtually risk-free, and analysis can be performed using an automatic algorithm. Nevertheless, lung EIT is less well validated than lung CT. For instance, the assumption that a decrease in compliance in response to a decrease in PEEP is due to new collapse has been questioned (Protti et al., Chiumello et al., Menga et al.). So far, lung CT remains the reference technique for studying individual responses to PEEP, while lung EIT requires further validation.
This study aims to verify whether the "best" PEEP identified using lung EIT is strongly associated with the net response assessed using lung CT, when PEEP is decreased from 20 to 5 cmH2O in patients with ARF treated with mechanical ventilation. If so, this would strengthen the rationale for using the lung EIT (which is safer and simpler than the lung CT) to set PEEP.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
EIT Assessment of Overdistension in ARDS Patients in Prone Position
NCT06536543
Electrical Impedance Tomography for Optimization of Positive End-Expiratory Pressure: Acute Respiratory Distress Syndrome
NCT03793842
Ventilator-induced Right Ventricular Injury During EIT-based PEEP Titration in Patients With ARDS
NCT05583461
Effect of PEEP on Lung Regional Ventilation and Perfusion
NCT04081155
Comparison of Different PEEP Titration Strategies Using Electrical Impedance Tomography in Patients With ARDS
NCT04247477
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* The patient undergoes a lung CT and EIT to guide the setting of PEEP as part of our routine clinical practice
Exclusion Criteria
* Pregnancy (as this condition alters the respiratory physiology)
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Istituto Clinico Humanitas
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
References
Explore related publications, articles, or registry entries linked to this study.
Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013 Nov 28;369(22):2126-36. doi: 10.1056/NEJMra1208707. No abstract available.
Sahetya SK, Goligher EC, Brower RG. Fifty Years of Research in ARDS. Setting Positive End-Expiratory Pressure in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2017 Jun 1;195(11):1429-1438. doi: 10.1164/rccm.201610-2035CI.
Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M, Russo S, Patroniti N, Cornejo R, Bugedo G. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med. 2006 Apr 27;354(17):1775-86. doi: 10.1056/NEJMoa052052.
Franchineau G, Jonkman AH, Piquilloud L, Yoshida T, Costa E, Roze H, Camporota L, Piraino T, Spinelli E, Combes A, Alcala GC, Amato M, Mauri T, Frerichs I, Brochard LJ, Schmidt M. Electrical Impedance Tomography to Monitor Hypoxemic Respiratory Failure. Am J Respir Crit Care Med. 2024 Mar 15;209(6):670-682. doi: 10.1164/rccm.202306-1118CI.
Protti A, Santini A, Pennati F, Chiurazzi C, Cressoni M, Ferrari M, Iapichino GE, Carenzo L, Lanza E, Picardo G, Caironi P, Aliverti A, Cecconi M. Lung Response to a Higher Positive End-Expiratory Pressure in Mechanically Ventilated Patients With COVID-19. Chest. 2022 Apr;161(4):979-988. doi: 10.1016/j.chest.2021.10.012. Epub 2021 Oct 16.
Jonkman AH, Alcala GC, Pavlovsky B, Roca O, Spadaro S, Scaramuzzo G, Chen L, Dianti J, Sousa MLA, Sklar MC, Piraino T, Ge H, Chen GQ, Zhou JX, Li J, Goligher EC, Costa E, Mancebo J, Mauri T, Amato M, Brochard LJ; Pleural Pressure Working Group (PLUG). Lung Recruitment Assessed by Electrical Impedance Tomography (RECRUIT): A Multicenter Study of COVID-19 Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2023 Jul 1;208(1):25-38. doi: 10.1164/rccm.202212-2300OC.
Chiumello D, Marino A, Brioni M, Cigada I, Menga F, Colombo A, Crimella F, Algieri I, Cressoni M, Carlesso E, Gattinoni L. Lung Recruitment Assessed by Respiratory Mechanics and Computed Tomography in Patients with Acute Respiratory Distress Syndrome. What Is the Relationship? Am J Respir Crit Care Med. 2016 Jun 1;193(11):1254-63. doi: 10.1164/rccm.201507-1413OC.
Menga LS, Subira C, Wong A, Sousa M, Brochard LJ. Setting positive end-expiratory pressure: does the 'best compliance' concept really work? Curr Opin Crit Care. 2024 Feb 1;30(1):20-27. doi: 10.1097/MCC.0000000000001121. Epub 2023 Nov 29.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
TAC-EIT-20-5
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.