Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
NA
43 participants
INTERVENTIONAL
2024-01-26
2025-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Ventilation Strategies Impact on Oxygenation and Postoperative Pulmonary Complications in Lung Surgery Patients
NCT06805760
Driving Pressure Guided Mechanical Ventilation Versus Lung Protective Ventilation Among Patients Undergoing Elective Surgeries
NCT07092943
Effect of Different Oxygen Concentration on Postoperative Pulmonary Complications After Pulmonary Reexpansion
NCT06202586
Transpulmonary Pressure in Right Ventricle Protection of ARDS
NCT05629832
Mechanical Ventilation During Cardiac Surgery
NCT02090205
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Driving pressure, defined as the difference between platform airway pressure and positive end-expiratory pressure, was first introduced by Amato and his colleagues in their meta-analysis study on acute respiratory distress syndrome in 2015, demonstrating that driving pressure was most strongly associated with survival among various ventilation parameters. A lower driving pressure has been verified to be closely relative to an ameliorative prognosis after surgery. However, controversy persists regarding whether driving pressure-guided ventilation can decrease the incidences of postoperative hypoxemia and other pulmonary complications in the patients underwent surgical repair of acute type A aortic dissection.
Given the need for additional evidence to confirm the relationship between driving pressure and postoperative hypoxemia in the patients with acute type A aortic dissection, this open-label, randomized control clinical trial aims to assess the efficacy and safety of the driving pressure-guided lung protective ventilation strategy in preventing hypoxemia and other pulmonary complications after the surgical repair for acute type A aortic dissection.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
PREVENTION
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Driving pressure-guided lung protective ventilation during the surgery
A 10-cycle experimental ventilation will be carried out at each level of positive end expiratory pressure after intubation, and the driving pressure of the last cycle will be recorded. The positive end expiratory pressure value corresponding to the lowest driving pressure is recognised as the optimal ventilation parameter.
Driving pressure-guided positive end expiratory pressure
The positive end expiratory pressure setting rules are as follows: a 10-cycle experimental ventilation will be carried out at each level of positive end expiratory pressure after intubation, and the driving pressure of the last cycle will be recorded. The positive end expiratory pressure value corresponding to the lowest driving pressure is recognised as the optimal ventilation parameter. Partial pressure of carbon dioxide monitoring is employed to determine the tidal volume and respiratory rate. Inspiration/expiration pattern is adjusted based on the preoperative small airway condition. This parameter is subject to modification upon cessation of ventilation, ICU admission, and every morning throughout the ventilation period. During cardiopulmonary bypass, mechanical ventilation is maintained using the low-level parameters.
Ventilation strategy
A Pressure regulated volume control mode is used in the patients before extubation. The ventilation target are: (1) a pulse oximetry ≥ 90% or a partial pressure of arterial oxygen ≥ 60mm Hg; (2) a partial pressure of arterial carbon dioxide: 35 \~ 50 mm Hg and (3) a pondus hydrogenii (pH) value \> 7.20. The ventilation parameters are: (1) tidal volume: 6 \~ 8 mL/Kg predictive body weight; (2) respiratory rate 10 \~ 15 cycles per minute; (3) inspiratory/expiratory ratio: 1:1.5 (1:2.5 - 1:3 in the patients with chronic obstructive pulmonary disease); positive end expiratory pressure: 0 \~ 8 cm centimeter water column. On-pump ventilation parameters are: (1) tidal volume: 4 mL/Kg predictive body weight; (2) respiratory rate: 4 circles per minute; (3) positive end-expiratory pressure: 4 cm centimeter water column; (4) inspiratory oxygen fraction: 21%.
Management of hypoxemia
Management of hypoxemia will be initiated immediately through the following steps: (1) carefully checking anaesthesia apparatus malfunction, airway normality, and monitoring accuracy; (2) improving cardiac function, correcting fluid overload, and alleviating systemic inflammation; (3) performing alveolar recruitment manoeuvres as described above; (4) increasing the tidal volume and positive end expiratory pressure within the upper limits; (5) increasing the respiratory rate while addressing concurrent hypercapnia; (6) titrating the fraction of inspiratory oxygen until the pulse oximetry reaches or exceeds 90%; and (7) considering the use of extracorporeal membrane oxygenation if any following situations occurred 14: (a) a partial pressure of arterial oxygen \< 50 mm Hg for more than 3 hours; (b) a partial pressure of arterial oxygen to inspiratory oxygen fraction ratio \< 80 mm Hg for more than 6 hours; or (c) a critical respiratory acidosis for more than 6 hours.
Conventional lung protective ventilation
Positive end expiratory pressure will be maintained at the level facilitating optimal oxygenation during the off-pump period.
Optimal oxygenation-guided positive end expiratory pressure
Positive end expiratory pressure will be maintained at the level facilitating optimal oxygenation during the off-pump period. Partial pressure of carbon dioxide monitoring is employed to determine the tidal volume and respiratory rate. Inspiration/expiration pattern is adjusted based on the preoperative small airway condition. This parameter is subject to modification upon cessation of ventilation, ICU admission, and every morning throughout the ventilation period. During cardiopulmonary bypass, mechanical ventilation is maintained using the low-level parameters.
Ventilation strategy
A Pressure regulated volume control mode is used in the patients before extubation. The ventilation target are: (1) a pulse oximetry ≥ 90% or a partial pressure of arterial oxygen ≥ 60mm Hg; (2) a partial pressure of arterial carbon dioxide: 35 \~ 50 mm Hg and (3) a pondus hydrogenii (pH) value \> 7.20. The ventilation parameters are: (1) tidal volume: 6 \~ 8 mL/Kg predictive body weight; (2) respiratory rate 10 \~ 15 cycles per minute; (3) inspiratory/expiratory ratio: 1:1.5 (1:2.5 - 1:3 in the patients with chronic obstructive pulmonary disease); positive end expiratory pressure: 0 \~ 8 cm centimeter water column. On-pump ventilation parameters are: (1) tidal volume: 4 mL/Kg predictive body weight; (2) respiratory rate: 4 circles per minute; (3) positive end-expiratory pressure: 4 cm centimeter water column; (4) inspiratory oxygen fraction: 21%.
Management of hypoxemia
Management of hypoxemia will be initiated immediately through the following steps: (1) carefully checking anaesthesia apparatus malfunction, airway normality, and monitoring accuracy; (2) improving cardiac function, correcting fluid overload, and alleviating systemic inflammation; (3) performing alveolar recruitment manoeuvres as described above; (4) increasing the tidal volume and positive end expiratory pressure within the upper limits; (5) increasing the respiratory rate while addressing concurrent hypercapnia; (6) titrating the fraction of inspiratory oxygen until the pulse oximetry reaches or exceeds 90%; and (7) considering the use of extracorporeal membrane oxygenation if any following situations occurred 14: (a) a partial pressure of arterial oxygen \< 50 mm Hg for more than 3 hours; (b) a partial pressure of arterial oxygen to inspiratory oxygen fraction ratio \< 80 mm Hg for more than 6 hours; or (c) a critical respiratory acidosis for more than 6 hours.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Driving pressure-guided positive end expiratory pressure
The positive end expiratory pressure setting rules are as follows: a 10-cycle experimental ventilation will be carried out at each level of positive end expiratory pressure after intubation, and the driving pressure of the last cycle will be recorded. The positive end expiratory pressure value corresponding to the lowest driving pressure is recognised as the optimal ventilation parameter. Partial pressure of carbon dioxide monitoring is employed to determine the tidal volume and respiratory rate. Inspiration/expiration pattern is adjusted based on the preoperative small airway condition. This parameter is subject to modification upon cessation of ventilation, ICU admission, and every morning throughout the ventilation period. During cardiopulmonary bypass, mechanical ventilation is maintained using the low-level parameters.
Optimal oxygenation-guided positive end expiratory pressure
Positive end expiratory pressure will be maintained at the level facilitating optimal oxygenation during the off-pump period. Partial pressure of carbon dioxide monitoring is employed to determine the tidal volume and respiratory rate. Inspiration/expiration pattern is adjusted based on the preoperative small airway condition. This parameter is subject to modification upon cessation of ventilation, ICU admission, and every morning throughout the ventilation period. During cardiopulmonary bypass, mechanical ventilation is maintained using the low-level parameters.
Ventilation strategy
A Pressure regulated volume control mode is used in the patients before extubation. The ventilation target are: (1) a pulse oximetry ≥ 90% or a partial pressure of arterial oxygen ≥ 60mm Hg; (2) a partial pressure of arterial carbon dioxide: 35 \~ 50 mm Hg and (3) a pondus hydrogenii (pH) value \> 7.20. The ventilation parameters are: (1) tidal volume: 6 \~ 8 mL/Kg predictive body weight; (2) respiratory rate 10 \~ 15 cycles per minute; (3) inspiratory/expiratory ratio: 1:1.5 (1:2.5 - 1:3 in the patients with chronic obstructive pulmonary disease); positive end expiratory pressure: 0 \~ 8 cm centimeter water column. On-pump ventilation parameters are: (1) tidal volume: 4 mL/Kg predictive body weight; (2) respiratory rate: 4 circles per minute; (3) positive end-expiratory pressure: 4 cm centimeter water column; (4) inspiratory oxygen fraction: 21%.
Management of hypoxemia
Management of hypoxemia will be initiated immediately through the following steps: (1) carefully checking anaesthesia apparatus malfunction, airway normality, and monitoring accuracy; (2) improving cardiac function, correcting fluid overload, and alleviating systemic inflammation; (3) performing alveolar recruitment manoeuvres as described above; (4) increasing the tidal volume and positive end expiratory pressure within the upper limits; (5) increasing the respiratory rate while addressing concurrent hypercapnia; (6) titrating the fraction of inspiratory oxygen until the pulse oximetry reaches or exceeds 90%; and (7) considering the use of extracorporeal membrane oxygenation if any following situations occurred 14: (a) a partial pressure of arterial oxygen \< 50 mm Hg for more than 3 hours; (b) a partial pressure of arterial oxygen to inspiratory oxygen fraction ratio \< 80 mm Hg for more than 6 hours; or (c) a critical respiratory acidosis for more than 6 hours.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. Age ≥ 14 years and ≤ 70 years old;
3. Being confirmed the diagnosis by chest computed tomography angiography and receiving the surgical repair of acute type A aortic dissection.
Exclusion Criteria
2. Sepsis before surgery;
3. Chronic pulmonary disease including lung infection or asthma requiring long-term pharmacotherapy;
4. History of lung tumor;
5. Obstructive sleep apnea hypopnea syndrome requiring long-term noninvasive mechanical ventilation support;
6. Heart failure requiring catecholamines or invasive mechanical ventilation support;
7. Body mass index \> 30 Kg·m-2;
8. Being reluctance to participate this study.
14 Years
70 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Yong Lin, PhD
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Yong Lin, PhD
Associate chief physician
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Yong Lin, MD
Role: PRINCIPAL_INVESTIGATOR
Fujian Medical University Union Hospital
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Fujian medical university union hospital
Fuzhou, Fujian, China
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
2023YF051-01
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.