Specific Mechanical Power Assessment in Patients With Acute Respiratory Distress Syndrome
NCT ID: NCT05410262
Last Updated: 2023-03-07
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
18 participants
OBSERVATIONAL
2022-07-01
2022-12-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Mechanical Power Normalized to Compliance in ARDS
NCT05761626
Clinical and Physiological Assessment of a Nearly Ultra-protective Lung Ventilation Strategy: A Quasi-experimental Preliminary Study in ARDS Patients
NCT04435613
Components of Mechanical Power on the Functional Lung in ARDS
NCT07171632
Open Lung Strategy, Gas Distribution and Right Heart Function in ARDS Patients
NCT03202641
Effect of Slope Time in PCV Mode on Mechanical Power Calculation and Oxygenation in Covid-19 ARDS Patients.
NCT05474300
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Ventilator-induced lung injury results from the interaction between the mechanical load applied to the lung and its capacity to tolerate it. Factors such as tidal volume (Vt), plateau pressure (PPlat), lung strain or insufflation pressure (ΔP), inspiratory flow rate (VI), respiratory rate (RR), excessive inspiratory effort, high levels of FiO2 and high levels of positive end-expiratory pressure (PEEP), have been directly involved in damage mechanism. With an integrating and rheological idea, the concept of mechanical power tries to encompass the majority of these factors within a measurable unit in joules per minute, as the expression of power applied on a repetitive basis on the respiratory system in ARDS. Although the concept of MP holds promise for preventing the risk of VILI, its utility has not been proven in clinical practice until now. The main value of MP over the rest of commonly used variables for the monitoring of patients with ARDS is that it includes flow on injury mechanism (kinetic energy), accepting that an inverse relationship exists between this mechanism and the capacity of alveoli to adapt to change during the ventilation cycle (strain rate), as well as it embodies the concept of process repeatability (respiratory rate), though not of its duration. This begs the question whether we should consider its value at the moment of defining a mechanical ventilation strategy. The main disadvantage of its application is that MP conceives the respiratory system in an integrated manner and not related to or standardized with the ventilable lung portion, that is ultimately the one who has to withstand the ventilatory load; in other words, the same MP may have different consequences depending on the baby lung size or its equivalent, the severity of ARDS.
The objective of this study is to evaluate the influence of the ventilable lung size on VILI mechanisms in patients suffering from ARDS treated with protective ventilation with similar MP.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Mechanical power and risk of ventilator-induced lung injury in patients with ARDS
This study will prospectively evaluate patients consecutively admitted with ARDS, as defined according to the Berlin expert consensus
Evaluation of CT images
A helicoidal CT scanner will be used (Aquilion CXL, Toshiba, Japan), with AIDR 3D technique (Adaptive Iterative Dose Reduction 3D) in order to minimize exposure to X-rays. Two complete thorax CT scans will be performed, one of them in expiratory pause (PEEP) and the other in inspiratory pause (PPlat). Esophageal pressure shall be measured (FluxMed GrT, Argentina) and transpulmonary pressure will be calculated at the end of inspiration (Ppl-insp) and expiration (Ppl-exp).
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Evaluation of CT images
A helicoidal CT scanner will be used (Aquilion CXL, Toshiba, Japan), with AIDR 3D technique (Adaptive Iterative Dose Reduction 3D) in order to minimize exposure to X-rays. Two complete thorax CT scans will be performed, one of them in expiratory pause (PEEP) and the other in inspiratory pause (PPlat). Esophageal pressure shall be measured (FluxMed GrT, Argentina) and transpulmonary pressure will be calculated at the end of inspiration (Ppl-insp) and expiration (Ppl-exp).
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Exclusion Criteria
18 Years
80 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Hospital El Cruce
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Nestor Pistillo
Head of Intensive Care Unit al Hospital El Cruce
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Nestor Pistillo
Role: PRINCIPAL_INVESTIGATOR
Hospital El Cruce
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Hospital de Alta Complejidad en Red El Cruce Nestor C. Kirchner
San Juan Bautista, Buenos Aires, Argentina
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Gattinoni L, Tonetti T, Cressoni M, Cadringher P, Herrmann P, Moerer O, Protti A, Gotti M, Chiurazzi C, Carlesso E, Chiumello D, Quintel M. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016 Oct;42(10):1567-1575. doi: 10.1007/s00134-016-4505-2. Epub 2016 Sep 12.
Cressoni M, Gotti M, Chiurazzi C, Massari D, Algieri I, Amini M, Cammaroto A, Brioni M, Montaruli C, Nikolla K, Guanziroli M, Dondossola D, Gatti S, Valerio V, Vergani GL, Pugni P, Cadringher P, Gagliano N, Gattinoni L. Mechanical Power and Development of Ventilator-induced Lung Injury. Anesthesiology. 2016 May;124(5):1100-8. doi: 10.1097/ALN.0000000000001056.
Costa ELV, Slutsky AS, Brochard LJ, Brower R, Serpa-Neto A, Cavalcanti AB, Mercat A, Meade M, Morais CCA, Goligher E, Carvalho CRR, Amato MBP. Ventilatory Variables and Mechanical Power in Patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2021 Aug 1;204(3):303-311. doi: 10.1164/rccm.202009-3467OC.
Coppola S, Caccioppola A, Froio S, Formenti P, De Giorgis V, Galanti V, Consonni D, Chiumello D. Effect of mechanical power on intensive care mortality in ARDS patients. Crit Care. 2020 May 24;24(1):246. doi: 10.1186/s13054-020-02963-x.
Gattinoni L, Marini JJ, Collino F, Maiolo G, Rapetti F, Tonetti T, Vasques F, Quintel M. The future of mechanical ventilation: lessons from the present and the past. Crit Care. 2017 Jul 12;21(1):183. doi: 10.1186/s13054-017-1750-x.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
El Cruce
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.