Study of the Effects of Overfeeding on Glucocorticoids in Lean and Obese Subjects

NCT ID: NCT04482738

Last Updated: 2022-03-23

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Total Enrollment

36 participants

Study Classification

OBSERVATIONAL

Study Start Date

2020-05-14

Study Completion Date

2021-02-20

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Investigators suggest that in lean subjects cortisol increases in response to overfeeding and that this increase is blunted in obese subjects. A group of 18 male healthy lean subjects and another group of 18 male healthy obese subjects will undergo a high-calorie meal test. Prior to the meal intake, an indirect calorimetry, bioelectrical impedance, heart rate variability, a fasting blood sample and a perceived stress questionnaire will be assessed. After intake of the study meal, blood tests will be performed in order to measure the secretion of cortisol, glucose and lipid metabolism and inflammatory markers. Indirect calorimetry will be assessed again 60 and 180 minutes after the meal intake.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Obesity is one of the most serious health problems in the 21st century. High energy food and a sedentary lifestyle are driving the current obesity pandemic. These factors activate the hypothalamic-pituitary-adrenal (HPA) axis, the key regulatory pathway of energy homeostasis. Activation of the HPA-axis leads to secretion of glucocorticoids from the adrenal glands, which control energy homeostasis by mobilizing and redistributing energy substrates.

Animal models of obesity have shown that glucocorticoids play a key role in the development of the metabolic syndrome. However, studies in humans yielded conflicting results. These studies have a major limitation in common. They do not consider glucocorticoid rhythmicity but rather investigate a snapshot of glucocorticoid secretion. Rhythmicity, however, is crucial because already minor glucocorticoid phase disturbances cause disease and could contribute to obesity.

Interestingly, excessive food intake may increase cortisol levels in healthy subjects . The consequence of this food-induced cortisol peak is not understood, but it may be key to restoring energy homeostasis after a meal. Whether the food-induced cortisol peak in obese subjects is disturbed is not known

With this study, investigators aim to better understand the role played by glucocorticoids in the origin of overweight and obesity. Researchers will investigate, in lean and obese subjects, whether the pulsatile release of cortisol increases after intake of a high-calorie meal. 36 subjects will take part in the study: a group of 18 male lean subjects and a second group of 18 male obese patients.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Overweight and Obesity

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

CASE_CONTROL

Study Time Perspective

CROSS_SECTIONAL

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Lean subjects

24 hours before the study visit, participants will be asked to refrain from alcohol and strenuous exercise. Patients will be asked to remain fasted 10 hours before the study visit takes place. On the day of the study visit, patients will be admitted to the hospital and, after intake of the study meal, blood samples will be taken.

High-calorie meal

Intervention Type OTHER

Intake of a high-calorie meal (2500-3000 calories) within 15 minutes.

Obese subjects

24 hours before the study visit, participants will be asked to refrain from alcohol and strenuous exercise. Patients will be asked to remain fasted 10 hours before the study visit takes place. On the day of the study visit, patients will be admitted to the hospital and, after intake of the study meal, blood samples will be taken.

High-calorie meal

Intervention Type OTHER

Intake of a high-calorie meal (2500-3000 calories) within 15 minutes.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

High-calorie meal

Intake of a high-calorie meal (2500-3000 calories) within 15 minutes.

Intervention Type OTHER

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Body mass index (BMI) \>18,5 and \<25 kg/m2
* BMI \>30 kg/m2

Exclusion Criteria

* Any clinically significant concomitant diseases in lean subjects
* Any clinically significant concomitant diseases in obese subjects apart from features of the metabolic syndrome (dyslipidemia, arterial hypertension and insulin resistance)
* Lactose intolerance
* Severe food allergy
* Regular alcohol consumption (\>30 g/d)
* Regular fitness training (\>4 hours/week)
* Previous enrolment in a clinical trial within the last 3 months
* Inability or contradictions to undergo the investigated intervention
* Inability to follow the procedures of the study
Minimum Eligible Age

18 Years

Maximum Eligible Age

40 Years

Eligible Sex

MALE

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Novartis

INDUSTRY

Sponsor Role collaborator

Eleonora Seelig

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Eleonora Seelig

Principal Investigator

Responsibility Role SPONSOR_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Eleonora Seelig, MD

Role: PRINCIPAL_INVESTIGATOR

University Hospital, Basel, Switzerland

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

University Hospital Basel

Basel, Canton of Basel-City, Switzerland

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Switzerland

References

Explore related publications, articles, or registry entries linked to this study.

Prospective Studies Collaboration; Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J, Halsey J, Qizilbash N, Collins R, Peto R. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009 Mar 28;373(9669):1083-96. doi: 10.1016/S0140-6736(09)60318-4. Epub 2009 Mar 18.

Reference Type BACKGROUND
PMID: 19299006 (View on PubMed)

van der Klaauw AA, Farooqi IS. The hunger genes: pathways to obesity. Cell. 2015 Mar 26;161(1):119-132. doi: 10.1016/j.cell.2015.03.008.

Reference Type BACKGROUND
PMID: 25815990 (View on PubMed)

Vgontzas AN, Lin HM, Papaliaga M, Calhoun S, Vela-Bueno A, Chrousos GP, Bixler EO. Short sleep duration and obesity: the role of emotional stress and sleep disturbances. Int J Obes (Lond). 2008 May;32(5):801-9. doi: 10.1038/ijo.2008.4. Epub 2008 Feb 5.

Reference Type BACKGROUND
PMID: 18253159 (View on PubMed)

de Guia RM, Rose AJ, Herzig S. Glucocorticoid hormones and energy homeostasis. Horm Mol Biol Clin Investig. 2014 Aug;19(2):117-28. doi: 10.1515/hmbci-2014-0021.

Reference Type BACKGROUND
PMID: 25390020 (View on PubMed)

Russell G, Lightman S. The human stress response. Nat Rev Endocrinol. 2019 Sep;15(9):525-534. doi: 10.1038/s41574-019-0228-0. Epub 2019 Jun 27.

Reference Type BACKGROUND
PMID: 31249398 (View on PubMed)

Ferrau F, Korbonits M. Metabolic Syndrome in Cushing's Syndrome Patients. Front Horm Res. 2018;49:85-103. doi: 10.1159/000486002. Epub 2018 Apr 5.

Reference Type BACKGROUND
PMID: 29894989 (View on PubMed)

Livingstone DE, Grassick SL, Currie GL, Walker BR, Andrew R. Dysregulation of glucocorticoid metabolism in murine obesity: comparable effects of leptin resistance and deficiency. J Endocrinol. 2009 May;201(2):211-8. doi: 10.1677/JOE-09-0003. Epub 2009 Feb 17.

Reference Type BACKGROUND
PMID: 19223399 (View on PubMed)

Livingstone DE, Jones GC, Smith K, Jamieson PM, Andrew R, Kenyon CJ, Walker BR. Understanding the role of glucocorticoids in obesity: tissue-specific alterations of corticosterone metabolism in obese Zucker rats. Endocrinology. 2000 Feb;141(2):560-3. doi: 10.1210/endo.141.2.7297.

Reference Type BACKGROUND
PMID: 10650936 (View on PubMed)

Liu Y, Nakagawa Y, Wang Y, Li R, Li X, Ohzeki T, Friedman TC. Leptin activation of corticosterone production in hepatocytes may contribute to the reversal of obesity and hyperglycemia in leptin-deficient ob/ob mice. Diabetes. 2003 Jun;52(6):1409-16. doi: 10.2337/diabetes.52.6.1409.

Reference Type BACKGROUND
PMID: 12765951 (View on PubMed)

Chalew S, Nagel H, Shore S. The hypothalamic-pituitary-adrenal axis in obesity. Obes Res. 1995 Jul;3(4):371-82. doi: 10.1002/j.1550-8528.1995.tb00163.x.

Reference Type BACKGROUND
PMID: 8521154 (View on PubMed)

Marin P, Darin N, Amemiya T, Andersson B, Jern S, Bjorntorp P. Cortisol secretion in relation to body fat distribution in obese premenopausal women. Metabolism. 1992 Aug;41(8):882-6. doi: 10.1016/0026-0495(92)90171-6.

Reference Type BACKGROUND
PMID: 1640867 (View on PubMed)

Duclos M, Corcuff JB, Etcheverry N, Rashedi M, Tabarin A, Roger P. Abdominal obesity increases overnight cortisol excretion. J Endocrinol Invest. 1999 Jun;22(6):465-71. doi: 10.1007/BF03343591.

Reference Type BACKGROUND
PMID: 10435857 (View on PubMed)

Pasquali R, Cantobelli S, Casimirri F, Capelli M, Bortoluzzi L, Flamia R, Labate AM, Barbara L. The hypothalamic-pituitary-adrenal axis in obese women with different patterns of body fat distribution. J Clin Endocrinol Metab. 1993 Aug;77(2):341-6. doi: 10.1210/jcem.77.2.8393881.

Reference Type BACKGROUND
PMID: 8393881 (View on PubMed)

Chalew SA, Lozano RA, Armour KM, Zadik Z, Kowarski AA. Reduction of plasma cortisol levels in childhood obesity. J Pediatr. 1991 Nov;119(5):778-80. doi: 10.1016/s0022-3476(05)80302-6. No abstract available.

Reference Type BACKGROUND
PMID: 1941386 (View on PubMed)

Chalew SA, Nagel H, Burt D, Edwards CR. The integrated concentration of cortisone is reduced in obese children. J Pediatr Endocrinol Metab. 1997 May-Jun;10(3):287-90. doi: 10.1515/JPEM.1997.10.3.287.

Reference Type BACKGROUND
PMID: 9388820 (View on PubMed)

Jessop DS, Dallman MF, Fleming D, Lightman SL. Resistance to glucocorticoid feedback in obesity. J Clin Endocrinol Metab. 2001 Sep;86(9):4109-14. doi: 10.1210/jcem.86.9.7826.

Reference Type BACKGROUND
PMID: 11549634 (View on PubMed)

Strain GW, Zumoff B, Strain JJ, Levin J, Fukushima DK. Cortisol production in obesity. Metabolism. 1980 Oct;29(10):980-5. doi: 10.1016/0026-0495(80)90043-8.

Reference Type BACKGROUND
PMID: 6999293 (View on PubMed)

Pasquali R, Anconetani B, Chattat R, Biscotti M, Spinucci G, Casimirri F, Vicennati V, Carcello A, Labate AM. Hypothalamic-pituitary-adrenal axis activity and its relationship to the autonomic nervous system in women with visceral and subcutaneous obesity: effects of the corticotropin-releasing factor/arginine-vasopressin test and of stress. Metabolism. 1996 Mar;45(3):351-6. doi: 10.1016/s0026-0495(96)90290-5.

Reference Type BACKGROUND
PMID: 8606643 (View on PubMed)

Rosmond R, Dallman MF, Bjorntorp P. Stress-related cortisol secretion in men: relationships with abdominal obesity and endocrine, metabolic and hemodynamic abnormalities. J Clin Endocrinol Metab. 1998 Jun;83(6):1853-9. doi: 10.1210/jcem.83.6.4843.

Reference Type BACKGROUND
PMID: 9626108 (View on PubMed)

Longui CA, Giusti MM, Calliari LE, Katiki T, Kochi C, Monte O. Partial glucocorticoid resistance in obese children detected by very low dose dexamethasone suppression test. J Pediatr Endocrinol Metab. 2003 Dec;16(9):1277-82. doi: 10.1515/jpem.2003.16.9.1277.

Reference Type BACKGROUND
PMID: 14714751 (View on PubMed)

Ljung T, Andersson B, Bengtsson BA, Bjorntorp P, Marin P. Inhibition of cortisol secretion by dexamethasone in relation to body fat distribution: a dose-response study. Obes Res. 1996 May;4(3):277-82. doi: 10.1002/j.1550-8528.1996.tb00546.x.

Reference Type BACKGROUND
PMID: 8732962 (View on PubMed)

Woods C, Tomlinson JW. The Dehydrogenase Hypothesis. Adv Exp Med Biol. 2015;872:353-80. doi: 10.1007/978-1-4939-2895-8_16.

Reference Type BACKGROUND
PMID: 26216003 (View on PubMed)

van Rossum EF. Obesity and cortisol: New perspectives on an old theme. Obesity (Silver Spring). 2017 Mar;25(3):500-501. doi: 10.1002/oby.21774. No abstract available.

Reference Type BACKGROUND
PMID: 28229549 (View on PubMed)

Al-Damluji S, Iveson T, Thomas JM, Pendlebury DJ, Rees LH, Besser GM. Food-induced cortisol secretion is mediated by central alpha-1 adrenoceptor modulation of pituitary ACTH secretion. Clin Endocrinol (Oxf). 1987 May;26(5):629-36. doi: 10.1111/j.1365-2265.1987.tb00819.x.

Reference Type BACKGROUND
PMID: 2822298 (View on PubMed)

Benedict C, Hallschmid M, Scheibner J, Niemeyer D, Schultes B, Merl V, Fehm HL, Born J, Kern W. Gut protein uptake and mechanisms of meal-induced cortisol release. J Clin Endocrinol Metab. 2005 Mar;90(3):1692-6. doi: 10.1210/jc.2004-1792. Epub 2004 Dec 7.

Reference Type BACKGROUND
PMID: 15585568 (View on PubMed)

Follenius M, Brandenberger G, Hietter B. Diurnal cortisol peaks and their relationships to meals. J Clin Endocrinol Metab. 1982 Oct;55(4):757-61. doi: 10.1210/jcem-55-4-757.

Reference Type BACKGROUND
PMID: 7202017 (View on PubMed)

Ibrahim M, Bonfiglio S, Schlogl M, Vinales KL, Piaggi P, Venti C, Walter M, Krakoff J, Thearle MS. Energy Expenditure and Hormone Responses in Humans After Overeating High-Fructose Corn Syrup Versus Whole-Wheat Foods. Obesity (Silver Spring). 2018 Jan;26(1):141-149. doi: 10.1002/oby.22068. Epub 2017 Nov 28.

Reference Type BACKGROUND
PMID: 29193741 (View on PubMed)

GBD 2015 Obesity Collaborators; Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, Marczak L, Mokdad AH, Moradi-Lakeh M, Naghavi M, Salama JS, Vos T, Abate KH, Abbafati C, Ahmed MB, Al-Aly Z, Alkerwi A, Al-Raddadi R, Amare AT, Amberbir A, Amegah AK, Amini E, Amrock SM, Anjana RM, Arnlov J, Asayesh H, Banerjee A, Barac A, Baye E, Bennett DA, Beyene AS, Biadgilign S, Biryukov S, Bjertness E, Boneya DJ, Campos-Nonato I, Carrero JJ, Cecilio P, Cercy K, Ciobanu LG, Cornaby L, Damtew SA, Dandona L, Dandona R, Dharmaratne SD, Duncan BB, Eshrati B, Esteghamati A, Feigin VL, Fernandes JC, Furst T, Gebrehiwot TT, Gold A, Gona PN, Goto A, Habtewold TD, Hadush KT, Hafezi-Nejad N, Hay SI, Horino M, Islami F, Kamal R, Kasaeian A, Katikireddi SV, Kengne AP, Kesavachandran CN, Khader YS, Khang YH, Khubchandani J, Kim D, Kim YJ, Kinfu Y, Kosen S, Ku T, Defo BK, Kumar GA, Larson HJ, Leinsalu M, Liang X, Lim SS, Liu P, Lopez AD, Lozano R, Majeed A, Malekzadeh R, Malta DC, Mazidi M, McAlinden C, McGarvey ST, Mengistu DT, Mensah GA, Mensink GBM, Mezgebe HB, Mirrakhimov EM, Mueller UO, Noubiap JJ, Obermeyer CM, Ogbo FA, Owolabi MO, Patton GC, Pourmalek F, Qorbani M, Rafay A, Rai RK, Ranabhat CL, Reinig N, Safiri S, Salomon JA, Sanabria JR, Santos IS, Sartorius B, Sawhney M, Schmidhuber J, Schutte AE, Schmidt MI, Sepanlou SG, Shamsizadeh M, Sheikhbahaei S, Shin MJ, Shiri R, Shiue I, Roba HS, Silva DAS, Silverberg JI, Singh JA, Stranges S, Swaminathan S, Tabares-Seisdedos R, Tadese F, Tedla BA, Tegegne BS, Terkawi AS, Thakur JS, Tonelli M, Topor-Madry R, Tyrovolas S, Ukwaja KN, Uthman OA, Vaezghasemi M, Vasankari T, Vlassov VV, Vollset SE, Weiderpass E, Werdecker A, Wesana J, Westerman R, Yano Y, Yonemoto N, Yonga G, Zaidi Z, Zenebe ZM, Zipkin B, Murray CJL. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N Engl J Med. 2017 Jul 6;377(1):13-27. doi: 10.1056/NEJMoa1614362. Epub 2017 Jun 12.

Reference Type BACKGROUND
PMID: 28604169 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

202000384

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Low-Dose Leptin and the Formerly-Obese
NCT00073242 UNKNOWN PHASE3
Stress, Hormones, and Eating
NCT01175512 COMPLETED EARLY_PHASE1
Effect of Ghrelin on Decision-Making
NCT03198143 WITHDRAWN PHASE1
Solutions for Hunger and Regulating Eating
NCT05004883 ACTIVE_NOT_RECRUITING NA