The Role of Morphological Phenotype in ARDS

NCT ID: NCT04157946

Last Updated: 2019-11-08

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Total Enrollment

12 participants

Study Classification

OBSERVATIONAL

Study Start Date

2017-08-07

Study Completion Date

2019-07-20

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Although most of the information focuses on understanding how the ventilator produces lung damage, the pulmonary factors that predispose to ventilator-induced lung injury (VILI) have been less studied. Acute respiratory distress syndrome (ARDS) can adopt different morphological phenotypes, with its own clinical and mechanical characteristics. This morphological phenotypes may favor the development of VILI for same ventilatory strategy

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

The lung in acute respiratory distress syndrome ARDS) is a heterogeneous viscoelastic system, in which areas with different time constants coexist, causing tidal volume to be distributed unevenly within an anatomically and functionally reduced lung. The administration of a disproportionately high tidal volume for this lung predisposes to the over-distension of the better ventilated alveoli and to the injury by tidal opening and closing of the alveoli more unstable. In this sense, using low tidal volume and homogenizing the lung by means of the prone position have proven beneficial in ARDS.

Tidal volume, driving pressure, inspiratory flow and respiratory rate have been identified as responsible for mechanical ventilation-induced lung injury (VILI). These factors together represent the mechanical power, the insulting energy which is repeatedly applied to a vulnerable lung parenchyma.

Although most of the information focuses on understanding how the ventilator produces lung damage and/or amplifies the existing one, the pulmonary factors that predispose to VILI have been less studied. Acute respiratory distress syndrome can adopt different morphological phenotypes, with its own clinical and mechanical characteristics. Understanding how each subgroup of ARDS responds to the protective ventilatory strategy could help to personalize treatment.

Objectives: To compare the risk of VILI in two groups of ARDS with different morphological phenotypes (focal and non-focal), ventilated with the same protective strategy.

Design: Patients with ARDS were ventilated under the same conditions of both tidal volume (TV) and plateau pressure (PPlat). Positive End Expiratory Pressure (PEEP) was adjusted to reach 30 cmH2O of PPlat. A CT was performed in inspiration and expiration. Transpulmonary pressures (TP) were measured and lung volumes calculated (Volume Analysis Software,Toshiba, Japan). Stress was defined as TP at the end of inspiration (TPinsp) and strain: tidal volume/End Expiratory Lung Volume Patients were classified into focal and non-focal according to the distribution of aeration loss in CT. Mann - Whitney U test was used to compare variables and Pearson correlation coefficient to compare its correlation. Significant: p \<0.05

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Respiratory Distress Syndrome, Adult

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

PROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Focal

ARDS was classified according to the pattern that adopted the loss of aeration in the chest CT in the two groups: focal (predominant commitment in the dependant region) and non- focal (patched or diffused involvement of the entire lung)

CT

Intervention Type DIAGNOSTIC_TEST

Patients with ARDS were included. We excluded patients with emphysema, asthma, pneumothorax, or serious conditions of instability: oxygen saturation ≤ 88%; severe shock, ventricular arrhythmia, or myocardial ischemia.

To allow comparison between groups, patients were ventilated in volume control under similar conditions of tidal volume (TV; 6 ml/kg-PBW), plateau pressure (PPlat 30 cmH2O), respiratory rate (18 bit/min) and constant flow. PEEP was adjusted to reach objective PPlat.

Transpulmonary pressures (TP) were measured and a chest CT scan performed during an expiratory and inspiratory pause. Global and regional volumes of lungs were measured using specific software (Volume Analysis Software,Toshiba, Japan). Three regions were identified: basal (from the diaphragm to the carina), middle (from the carina to the aortic arch) and apical (above the aortic arch).

Non-Focal

ARDS was classified according to the pattern that adopted the loss of aeration in the chest CT in the two groups: focal (predominant commitment in the dependant region) and non- focal (patched or diffused involvement of the entire lung)

CT

Intervention Type DIAGNOSTIC_TEST

Patients with ARDS were included. We excluded patients with emphysema, asthma, pneumothorax, or serious conditions of instability: oxygen saturation ≤ 88%; severe shock, ventricular arrhythmia, or myocardial ischemia.

To allow comparison between groups, patients were ventilated in volume control under similar conditions of tidal volume (TV; 6 ml/kg-PBW), plateau pressure (PPlat 30 cmH2O), respiratory rate (18 bit/min) and constant flow. PEEP was adjusted to reach objective PPlat.

Transpulmonary pressures (TP) were measured and a chest CT scan performed during an expiratory and inspiratory pause. Global and regional volumes of lungs were measured using specific software (Volume Analysis Software,Toshiba, Japan). Three regions were identified: basal (from the diaphragm to the carina), middle (from the carina to the aortic arch) and apical (above the aortic arch).

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

CT

Patients with ARDS were included. We excluded patients with emphysema, asthma, pneumothorax, or serious conditions of instability: oxygen saturation ≤ 88%; severe shock, ventricular arrhythmia, or myocardial ischemia.

To allow comparison between groups, patients were ventilated in volume control under similar conditions of tidal volume (TV; 6 ml/kg-PBW), plateau pressure (PPlat 30 cmH2O), respiratory rate (18 bit/min) and constant flow. PEEP was adjusted to reach objective PPlat.

Transpulmonary pressures (TP) were measured and a chest CT scan performed during an expiratory and inspiratory pause. Global and regional volumes of lungs were measured using specific software (Volume Analysis Software,Toshiba, Japan). Three regions were identified: basal (from the diaphragm to the carina), middle (from the carina to the aortic arch) and apical (above the aortic arch).

Intervention Type DIAGNOSTIC_TEST

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

Transpulmonary pressures (TP) were measured

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

Acute respiratory distress syndrome (ARDS).

Exclusion Criteria

Emphysema Asthma Pneumothorax Oxygen saturation ≤ 88% Severe shock Ventricular arrhythmia Myocardial ischemia.

\-
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Hospital El Cruce

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Nestor Pistillo

Head of Intensive Care Unit at Hospital El Cruce

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Nestor Pistillo, MD

Role: PRINCIPAL_INVESTIGATOR

Hospital El Cruce

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Hospital El Cruce

San Juan Bautista, Buenos Aires, Argentina

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Argentina

References

Explore related publications, articles, or registry entries linked to this study.

Guerin C, Beuret P, Constantin JM, Bellani G, Garcia-Olivares P, Roca O, Meertens JH, Maia PA, Becher T, Peterson J, Larsson A, Gurjar M, Hajjej Z, Kovari F, Assiri AH, Mainas E, Hasan MS, Morocho-Tutillo DR, Baboi L, Chretien JM, Francois G, Ayzac L, Chen L, Brochard L, Mercat A; investigators of the APRONET Study Group, the REVA Network, the Reseau recherche de la Societe Francaise d'Anesthesie-Reanimation (SFAR-recherche) and the ESICM Trials Group. A prospective international observational prevalence study on prone positioning of ARDS patients: the APRONET (ARDS Prone Position Network) study. Intensive Care Med. 2018 Jan;44(1):22-37. doi: 10.1007/s00134-017-4996-5. Epub 2017 Dec 7.

Reference Type BACKGROUND
PMID: 29218379 (View on PubMed)

Protti A, Andreis DT, Monti M, Santini A, Sparacino CC, Langer T, Votta E, Gatti S, Lombardi L, Leopardi O, Masson S, Cressoni M, Gattinoni L. Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? Crit Care Med. 2013 Apr;41(4):1046-55. doi: 10.1097/CCM.0b013e31827417a6.

Reference Type BACKGROUND
PMID: 23385096 (View on PubMed)

Cressoni M, Cadringher P, Chiurazzi C, Amini M, Gallazzi E, Marino A, Brioni M, Carlesso E, Chiumello D, Quintel M, Bugedo G, Gattinoni L. Lung inhomogeneity in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2014 Jan 15;189(2):149-58. doi: 10.1164/rccm.201308-1567OC.

Reference Type BACKGROUND
PMID: 24261322 (View on PubMed)

Gattinoni L, Marini JJ, Pesenti A, Quintel M, Mancebo J, Brochard L. The "baby lung" became an adult. Intensive Care Med. 2016 May;42(5):663-673. doi: 10.1007/s00134-015-4200-8. Epub 2016 Jan 18.

Reference Type BACKGROUND
PMID: 26781952 (View on PubMed)

Acute Respiratory Distress Syndrome Network; Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000 May 4;342(18):1301-8. doi: 10.1056/NEJM200005043421801.

Reference Type BACKGROUND
PMID: 10793162 (View on PubMed)

Nieman GF, Satalin J, Andrews P, Habashi NM, Gatto LA. Lung stress, strain, and energy load: engineering concepts to understand the mechanism of ventilator-induced lung injury (VILI). Intensive Care Med Exp. 2016 Dec;4(1):16. doi: 10.1186/s40635-016-0090-5. Epub 2016 Jun 18.

Reference Type BACKGROUND
PMID: 27316442 (View on PubMed)

Retamal J, Hurtado D, Villarroel N, Bruhn A, Bugedo G, Amato MBP, Costa ELV, Hedenstierna G, Larsson A, Borges JB. Does Regional Lung Strain Correlate With Regional Inflammation in Acute Respiratory Distress Syndrome During Nonprotective Ventilation? An Experimental Porcine Study. Crit Care Med. 2018 Jun;46(6):e591-e599. doi: 10.1097/CCM.0000000000003072.

Reference Type BACKGROUND
PMID: 29528946 (View on PubMed)

ARDS Definition Task Force; Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012 Jun 20;307(23):2526-33. doi: 10.1001/jama.2012.5669.

Reference Type RESULT
PMID: 22797452 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

HElCruce

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Impact of PEEP Trials on Ventilation-Perfusion Matching in ARDS Patients
NCT06823804 ENROLLING_BY_INVITATION PHASE2/PHASE3