Compression Is Life In Cardiac Arrest - Human Study (CILICA-HS).
NCT ID: NCT03817892
Last Updated: 2022-03-22
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
500 participants
INTERVENTIONAL
2019-12-01
2025-01-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
This study should, over a period of 2 years, include 500 patients with cardiac arrest for whom specialized resuscitation is undertaken. The investigators hope by this study to improve the knowledge on the optimal rhythm of the ECC and to validate "in vivo" the interest for the guidance found on manikin. This study should make it possible to clarify the recommendations with a high level of evidence in this field and thus contribute to improving the prognosis of the victims of an out-of-hospital cardiac arrest.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Compression Is Life In Cardiac Arrest - Quality Study (CILICA-QS)
NCT03140202
Compression Is Life In Cardiac Arrest - Fatigue Study
NCT02322359
Prospective Study of 3 Phone Assistance Strategies to Achieve a Continuous Cardiac Massage
NCT01936597
Compression Only-CPR Versus Standard-CPR
NCT02401633
Comparison of the Quality of CPR by Lay Rescuers With and Without Feedback Devices
NCT02000505
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
This study should, over a period of 2 years, include 500 patients with cardiac arrest for whom specialized resuscitation is undertaken. The investigators hope by this study to improve the knowledge on the optimal rhythm of the ECC and to validate "in vivo" the interest for the guidance found on manikin. This study should make it possible to clarify the recommendations with a high level of evidence in this field and thus contribute to improving the prognosis of the victims of an out-of-hospital cardiac arrest.
Cardiac arrest (CA) remains a challenge for pre-hospital care. With an incidence of between 5 and 15 per 10,000 (46,000 patients per year in France) and a survival rate of only 5% to 15%, there is yet room for improvement in treatment to reduce morbi-mortality of these patients. The quality of cardiopulmonary resuscitation (CPR) is at the heart of the last three five-year recommendations. (1-3) The latest recommendations emphasize the importance for professionals to work at the highest quality of CPR and External Chest Compression (ECC) possible. (3) The ratio of the time during which the ECC is performed (Low-Flow) to the total time of the resuscitation is referred to as the Chest Compression Fraction (CCF). During CPR, it is essential for the patient's survival to minimize ECC disruption times and therefore to increase the CCF, as this is an independent element in CA survival's improvement. (4,5) ECC interruptions are deleterious to at least two titles. First, they are a source of direct stop in cerebral and coronary perfusions potentially altering the neurological prognosis and the probability of Return of Spontaneous Circulation. (6) Secondly, the quality of the cardiac output generated by the ECC at the time of resuming of the ECC after an interruption is less good for more than 30 seconds: time need for that several chest compressions can restore the best flow possible. (6,7) Reducing these interruptions and improving the ECC is therefore a major goal of improving CPR. The guidelines are that CCF must be greater than 60% and some experts estimate that a CCF of 80% is possible. (8,9) The outcome of patients with pre-hospital CA is significantly, positively and independently correlated with the consistency to different CCF targets, ECC frequency, ECC depth, and brief pre-external electric shock pause (\<10 seconds). (10) There is evidence that ECC's guidance improves adequacy to guidelines and allows to be closer with the ECC frequency, depth and release objectives. (11) The investigators have proved in simulation that the guidance of the ECC delays the deterioration of the overall quality of the ECC and its components (frequency, depth and relaxation) related to fatigue during a prolonged ECC beyond the 2 ECC relay minutes currently recommended. (12) Strategies to get closer with the guidelines regarding the quality of the ECC associated with an improvement in CCF should add or even enhance their beneficial effects for the management of CA victims. Achieving high quality CPR requires the measurement of quality of CPR (ECC and CCF). (13,14) This idea of a support strategy enhanced by "bundles" of concepts is developing in the literature. Thus Cheskes S et al. Describe a "high quality CPR" such as the association of a CCF greater than 70% and achievement of the objectives of the recommendations for the frequency and depth of the ECC. (15) The place of devices for guiding the quality of the ECC needs to be specified. Indeed, studies of their use in real-life situations are criticized for their methodological qualities and their size. (16) The use of a real-time guidance device is proposed as a possibility in the latest guidelines without being an indispensable element due to the lack of current evidence. (3) Its use or non-use does not imply any obvious loss of chance for patients. Evidence as to its usefulness therefore remains to be sought.
For this reason, the investigators wish, through an original, randomized, multi-center study, to provide some answers to the questions about the possibility of an improvement in CCF by the lengthening of the time between two ECC relays and the effect of guidance on the quality of the ECC. The design of the study will also allow to approach a possible combined effect of ECC relays rhythm and guidance. The currently recommended duration of a two-minute ECC cycle between two relays does not have a consistent evidence based and corresponds to a duration for which the ECC effort can be maintained in principle with efficiency. (3) Objective measures have shown that the quality of the ECC can be maintained beyond 2 minutes. Extending the duration of an ECC cycle could reduce the number of ECC interruptions and thus improve the CCF.
The investigators therefore formulate two hypotheses that they wish to test simultaneously using a 2x2 factorial design, in a multicenter randomized trial. The first assumption is that a 4-minutes relay rhythm improves the CCF (by reducing the No-Flow time) compared to the currently recommended 2-minutes relay rhythm. The second hypothesis is that a guiding device improves the quality of the ECC.
The CPRmeter® (guidance device used in this study) will record data on the ECC and its quality (depth, frequency, relaxation, CPRmeter® use time, No-Flow time and Low-Flow time) as well as ECC guidance for the group which will benefit from it (the other group will have the screen masked by a screen cap).
This study should, over a period of 2 years, include 500 major patients presenting a non-traumatic CA for whom a specialized CPR is undertaken. The investigators hope by this study to improve the knowledge on the optimal rhythm of the CEE and to validate "in vivo" the interest for the guidance found on manikin. This study should clarify the guidelines with a high level of evidence in this area and thus contribute to improving the prognosis of victims of out-hospital CA.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
FACTORIAL
OTHER
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Unguided 2 minutes (U2)
The External Chest Compression are performed without guidance of the CPRmeter device (according to the current guidelines).
The duration or rhythm of a relay during which a rescuer performs External Chest Compression before being relayed by another rescuer is 2 minutes according to the current guidelines.
No interventions assigned to this group
Unguided 4 minutes (U4)
The External Chest Compression are performed without guidance of the CPRmeter device (according to the current guidelines).
The duration or rhythm of a relay during which a rescuer performs External Chest Compression before being relayed by another rescuer is 4 minutes. (Rhythm of a relay 4 minutes)
Rhythm of a relay 4 minutes
The duration or rhythm of a relay is the time during which a rescuer performs External Chest Compression before being relayed by another rescuer. This time is 2 minutes in non intervention group according to the current guidelines and 4 minutes in experimental group.
Guided 2 minutes (G2)
The External Chest Compression are performed with guidance of the CPRmeter device. (Guidance of the External Chest Compression) The duration or rhythm of a relay during which a rescuer performs External Chest Compression before being relayed by another rescuer is 2 minutes according to the current guidelines.
Guidance of the External Chest Compression
The CPRmeter® device is positioned on the patient's chest with a disposable adhesive. In the situation of guidance of the External Chest Compression the rescuers have access in real time on the screen to visual feedback on the quality of the External Chest Compression performed and indications of possible corrections to improve the quality of the External Chest Compression . In the case of non-guidance of the External Chest Compression , a mask is position on the screen in order to hide the feedback information.
Guided 4 minutes (G4)
The External Chest Compression are performed with guidance of the CPRmeter device. (Guidance of the External Chest Compression) The duration or rhythm of a relay during which a rescuer performs External Chest Compression before being relayed by another rescuer is 4 minutes. (Rhythm of a relay 4 minutes)
Guidance of the External Chest Compression
The CPRmeter® device is positioned on the patient's chest with a disposable adhesive. In the situation of guidance of the External Chest Compression the rescuers have access in real time on the screen to visual feedback on the quality of the External Chest Compression performed and indications of possible corrections to improve the quality of the External Chest Compression . In the case of non-guidance of the External Chest Compression , a mask is position on the screen in order to hide the feedback information.
Rhythm of a relay 4 minutes
The duration or rhythm of a relay is the time during which a rescuer performs External Chest Compression before being relayed by another rescuer. This time is 2 minutes in non intervention group according to the current guidelines and 4 minutes in experimental group.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Guidance of the External Chest Compression
The CPRmeter® device is positioned on the patient's chest with a disposable adhesive. In the situation of guidance of the External Chest Compression the rescuers have access in real time on the screen to visual feedback on the quality of the External Chest Compression performed and indications of possible corrections to improve the quality of the External Chest Compression . In the case of non-guidance of the External Chest Compression , a mask is position on the screen in order to hide the feedback information.
Rhythm of a relay 4 minutes
The duration or rhythm of a relay is the time during which a rescuer performs External Chest Compression before being relayed by another rescuer. This time is 2 minutes in non intervention group according to the current guidelines and 4 minutes in experimental group.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Victim of a cardiorespiratory arrest
* Eligible for inclusion procedure in immediate life emergency
* Affiliated to the social security system
Exclusion Criteria
* Pregnant woman over 6 months old or breastfeeding.
* Known incurable disease.
* Palliative care in progress.
* Decision not to resuscitate from the patient (anticipated directives) or from the medical team.
* Traumatic cardiac arrest.
* Impossibility or contraindication to the use of the External Chest Compression guidance system.
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University Hospital, Caen
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Clément BULEON, MD
Role: PRINCIPAL_INVESTIGATOR
University Hospital of Caen
Pierre-Yves GUEUGNIAUD, MD, PhD
Role: STUDY_CHAIR
University Hospital of Lyon
Eric ROUPIE, MD, PhD
Role: STUDY_CHAIR
University Hospital of Caen
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University Hospital of Caen
Caen, Normandy, France
University Hospital of Amiens
Amiens, , France
Hospital of Cherbourg - Louis Pasteur
Cherbourg, , France
Hospital of Elbeuf Louviers Val de Reuil
Elbeuf, , France
Hospital Eure-Seine Evreux
Évreux, , France
Hospital of Le Havre -
Le Havre, , France
University Hospital of Lille
Lille, , France
Hospital of Lisieux - Robert Bisson
Lisieux, , France
University Hospital of Lyon
Lyon, , France
University Hospital of Rouen
Rouen, , France
Hospital of Valenciennes
Valenciennes, , France
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
International Liaison Committee on Resuscitation. 2005 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Part 4: Advanced life support. Resuscitation. 2005 Nov-Dec;67(2-3):213-47. doi: 10.1016/j.resuscitation.2005.09.018. No abstract available.
Nolan JP, Soar J, Zideman DA, Biarent D, Bossaert LL, Deakin C, Koster RW, Wyllie J, Bottiger B; ERC Guidelines Writing Group. European Resuscitation Council Guidelines for Resuscitation 2010 Section 1. Executive summary. Resuscitation. 2010 Oct;81(10):1219-76. doi: 10.1016/j.resuscitation.2010.08.021. No abstract available.
Monsieurs KG, Nolan JP, Bossaert LL, Greif R, Maconochie IK, Nikolaou NI, Perkins GD, Soar J, Truhlar A, Wyllie J, Zideman DA; ERC Guidelines 2015 Writing Group. European Resuscitation Council Guidelines for Resuscitation 2015: Section 1. Executive summary. Resuscitation. 2015 Oct;95:1-80. doi: 10.1016/j.resuscitation.2015.07.038. Epub 2015 Oct 15. No abstract available.
Christenson J, Andrusiek D, Everson-Stewart S, Kudenchuk P, Hostler D, Powell J, Callaway CW, Bishop D, Vaillancourt C, Davis D, Aufderheide TP, Idris A, Stouffer JA, Stiell I, Berg R; Resuscitation Outcomes Consortium Investigators. Chest compression fraction determines survival in patients with out-of-hospital ventricular fibrillation. Circulation. 2009 Sep 29;120(13):1241-7. doi: 10.1161/CIRCULATIONAHA.109.852202. Epub 2009 Sep 14.
Wik L, Olsen JA, Persse D, Sterz F, Lozano M Jr, Brouwer MA, Westfall M, Souders CM, Travis DT, Herken UR, Lerner EB. Why do some studies find that CPR fraction is not a predictor of survival? Resuscitation. 2016 Jul;104:59-62. doi: 10.1016/j.resuscitation.2016.04.013. Epub 2016 May 4.
Berg RA, Sanders AB, Kern KB, Hilwig RW, Heidenreich JW, Porter ME, Ewy GA. Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest. Circulation. 2001 Nov 13;104(20):2465-70. doi: 10.1161/hc4501.098926.
Cunningham LM, Mattu A, O'Connor RE, Brady WJ. Cardiopulmonary resuscitation for cardiac arrest: the importance of uninterrupted chest compressions in cardiac arrest resuscitation. Am J Emerg Med. 2012 Oct;30(8):1630-8. doi: 10.1016/j.ajem.2012.02.015. Epub 2012 May 23.
Kleinman ME, Brennan EE, Goldberger ZD, Swor RA, Terry M, Bobrow BJ, Gazmuri RJ, Travers AH, Rea T. Part 5: Adult Basic Life Support and Cardiopulmonary Resuscitation Quality: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2015 Nov 3;132(18 Suppl 2):S414-35. doi: 10.1161/CIR.0000000000000259. No abstract available.
Perkins GD, Jacobs IG, Nadkarni VM, Berg RA, Bhanji F, Biarent D, Bossaert LL, Brett SJ, Chamberlain D, de Caen AR, Deakin CD, Finn JC, Grasner JT, Hazinski MF, Iwami T, Koster RW, Lim SH, Ma MH, McNally BF, Morley PT, Morrison LJ, Monsieurs KG, Montgomery W, Nichol G, Okada K, Ong ME, Travers AH, Nolan JP; Utstein Collaborators. Cardiac Arrest and Cardiopulmonary Resuscitation Outcome Reports: Update of the Utstein Resuscitation Registry Templates for Out-of-Hospital Cardiac Arrest: A Statement for Healthcare Professionals From a Task Force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian and New Zealand Council on Resuscitation, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, Resuscitation Council of Asia); and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation. Resuscitation. 2015 Nov;96:328-40. doi: 10.1016/j.resuscitation.2014.11.002. Epub 2014 Nov 11.
Cheskes S, Schmicker RH, Rea T, Morrison LJ, Grunau B, Drennan IR, Leroux B, Vaillancourt C, Schmidt TA, Koller AC, Kudenchuk P, Aufderheide TP, Herren H, Flickinger KH, Charleston M, Straight R, Christenson J; ROC investigators. The association between AHA CPR quality guideline compliance and clinical outcomes from out-of-hospital cardiac arrest. Resuscitation. 2017 Jul;116:39-45. doi: 10.1016/j.resuscitation.2017.05.003. Epub 2017 May 2.
Hostler D, Everson-Stewart S, Rea TD, Stiell IG, Callaway CW, Kudenchuk PJ, Sears GK, Emerson SS, Nichol G; Resuscitation Outcomes Consortium Investigators. Effect of real-time feedback during cardiopulmonary resuscitation outside hospital: prospective, cluster-randomised trial. BMJ. 2011 Feb 4;342:d512. doi: 10.1136/bmj.d512.
Buleon C, Delaunay J, Parienti JJ, Halbout L, Arrot X, Gerard JL, Hanouz JL. Impact of a feedback device on chest compression quality during extended manikin CPR: a randomized crossover study. Am J Emerg Med. 2016 Sep;34(9):1754-60. doi: 10.1016/j.ajem.2016.05.077. Epub 2016 May 28.
Goodloe JM, Idris AH. Metrics save lives: value and hurdles faced. Curr Opin Crit Care. 2017 Jun;23(3):204-208. doi: 10.1097/MCC.0000000000000408.
Lin S, Scales DC. Cardiopulmonary resuscitation quality and beyond: the need to improve real-time feedback and physiologic monitoring. Crit Care. 2016 Jun 28;20(1):182. doi: 10.1186/s13054-016-1371-9.
Cheskes S, Byers A, Zhan C, Verbeek PR, Ko D, Drennan IR, Buick JE, Brooks SC, Lin S, Taher A, Morrison LJ; Rescu Epistry Investigators. CPR quality during out-of-hospital cardiac arrest transport. Resuscitation. 2017 May;114:34-39. doi: 10.1016/j.resuscitation.2017.02.016. Epub 2017 Feb 24.
Wallace SK, Abella BS, Becker LB. Quantifying the effect of cardiopulmonary resuscitation quality on cardiac arrest outcome: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2013 Mar 1;6(2):148-56. doi: 10.1161/CIRCOUTCOMES.111.000041. Epub 2013 Mar 12.
Buleon C, Parienti JJ, Morilland-Lecoq E, Halbout L, Cesareo E, Dubien PY, Jardel B, Boyer C, Husson K, Andriamirado F, Benet X, Morel-Marechal E, Aubrion A, Muntean C, Dupire E, Roupie E, Hubert H, Vilhelm C, Gueugniaud PY; CILICA-HS study group. Impacts of chest compression cycle length and real-time feedback with a CPRmeter(R) on chest compression quality in out-of-hospital cardiac arrest: study protocol for a multicenter randomized controlled factorial plan trial. Trials. 2020 Jul 8;21(1):627. doi: 10.1186/s13063-020-04536-3.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
17-248
Identifier Type: OTHER
Identifier Source: secondary_id
2018-A02000-55
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.