Ultrahigh-resolution Optical Coherence Tomography Imaging of the Anterior Eye Segment Structures
NCT ID: NCT03461978
Last Updated: 2025-05-23
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
14 participants
INTERVENTIONAL
2017-07-12
2023-06-16
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Recently, an ultrahigh-resolution OCT system was developed by our group providing resolutions of 1.7 and 17 µm in axial and lateral direction, respectively. This axial resolution is about four times better than that provided by standard OCT systems. It allows to perform in vivo imaging with a resolution close to biopsy of tissue and to visualize structures of the anterior eye segment with a remarkable richness of detail. The prototype was applied for in vivo imaging of the cornea including the precorneal tear film.
The goal of the planned pilot study is to apply this innovative imaging modality for visualization of the ultrastructure of the different parts of the anterior eye segment structures in diseased subjects, as well as in patients who underwent minimally invasive glaucoma surgery (MIGS). The obtained in vivo cross sectional images and three-dimensional data sets are hoped for contributing to the knowledge about the anatomy and physiology of the corresponding tissues. This could allow for a better interpretation of clinical features and findings obtained in slit lamp examination.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
High-resolution Imaging of Corneal Lesions With Optical Coherence Tomography (OCT) - A Pilot Study
NCT01753583
Investigation of Different Scanning Protocols for 3 Dimensional High-resolution Imaging of the Human Cornea With Optical Coherence Tomography (OCT) - A Pilot Study
NCT01843101
Novel Diagnostics With Optical Coherence Tomography: Imaging the Anterior Eye
NCT00343473
High Resolution Optical Coherence Tomography
NCT05130385
Characteristics and Limitations of Intraoperative OCT Supported Membrane Peeling in Macular Diseases
NCT02683694
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
PARALLEL
DIAGNOSTIC
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
10 patients with meibomian gland dysfunction
Ultrahigh resolution Spectral Domain OCT
A spectrometer based ultrahigh resolution Spectral Domain OCT (SDOCT) system operating at 800 nm for the anterior chamber will be employed in the present study. The spectrum of the Ti:Sapphire laser light source is centered at 800 nm. With a full width at half maximum bandwidth of 170 nm, the axial resolution is 1.3 μm in the cornea. The transverse resolution of the employed OCT system is 21 μm at the front surface of the cornea. For measurement, patients will place their head in a modified slit lamp head rest. During the measurement period, patients will be asked to look straight forward onto an internal fixation target and to avoid blinking. Different scattering patterns, e.g. raster, circular and spiral scans will be employed.
10 patients with cataract
Ultrahigh resolution Spectral Domain OCT
A spectrometer based ultrahigh resolution Spectral Domain OCT (SDOCT) system operating at 800 nm for the anterior chamber will be employed in the present study. The spectrum of the Ti:Sapphire laser light source is centered at 800 nm. With a full width at half maximum bandwidth of 170 nm, the axial resolution is 1.3 μm in the cornea. The transverse resolution of the employed OCT system is 21 μm at the front surface of the cornea. For measurement, patients will place their head in a modified slit lamp head rest. During the measurement period, patients will be asked to look straight forward onto an internal fixation target and to avoid blinking. Different scattering patterns, e.g. raster, circular and spiral scans will be employed.
10 patients after minimally invasive glaucoma surgery (MIGS)
Ultrahigh resolution Spectral Domain OCT
A spectrometer based ultrahigh resolution Spectral Domain OCT (SDOCT) system operating at 800 nm for the anterior chamber will be employed in the present study. The spectrum of the Ti:Sapphire laser light source is centered at 800 nm. With a full width at half maximum bandwidth of 170 nm, the axial resolution is 1.3 μm in the cornea. The transverse resolution of the employed OCT system is 21 μm at the front surface of the cornea. For measurement, patients will place their head in a modified slit lamp head rest. During the measurement period, patients will be asked to look straight forward onto an internal fixation target and to avoid blinking. Different scattering patterns, e.g. raster, circular and spiral scans will be employed.
10 patients after partial corneal transplantation
Ultrahigh resolution Spectral Domain OCT
A spectrometer based ultrahigh resolution Spectral Domain OCT (SDOCT) system operating at 800 nm for the anterior chamber will be employed in the present study. The spectrum of the Ti:Sapphire laser light source is centered at 800 nm. With a full width at half maximum bandwidth of 170 nm, the axial resolution is 1.3 μm in the cornea. The transverse resolution of the employed OCT system is 21 μm at the front surface of the cornea. For measurement, patients will place their head in a modified slit lamp head rest. During the measurement period, patients will be asked to look straight forward onto an internal fixation target and to avoid blinking. Different scattering patterns, e.g. raster, circular and spiral scans will be employed.
5 patients with demodicosis
Ultrahigh resolution Spectral Domain OCT
A spectrometer based ultrahigh resolution Spectral Domain OCT (SDOCT) system operating at 800 nm for the anterior chamber will be employed in the present study. The spectrum of the Ti:Sapphire laser light source is centered at 800 nm. With a full width at half maximum bandwidth of 170 nm, the axial resolution is 1.3 μm in the cornea. The transverse resolution of the employed OCT system is 21 μm at the front surface of the cornea. For measurement, patients will place their head in a modified slit lamp head rest. During the measurement period, patients will be asked to look straight forward onto an internal fixation target and to avoid blinking. Different scattering patterns, e.g. raster, circular and spiral scans will be employed.
5 patients with conjunctival pathologies
Ultrahigh resolution Spectral Domain OCT
A spectrometer based ultrahigh resolution Spectral Domain OCT (SDOCT) system operating at 800 nm for the anterior chamber will be employed in the present study. The spectrum of the Ti:Sapphire laser light source is centered at 800 nm. With a full width at half maximum bandwidth of 170 nm, the axial resolution is 1.3 μm in the cornea. The transverse resolution of the employed OCT system is 21 μm at the front surface of the cornea. For measurement, patients will place their head in a modified slit lamp head rest. During the measurement period, patients will be asked to look straight forward onto an internal fixation target and to avoid blinking. Different scattering patterns, e.g. raster, circular and spiral scans will be employed.
5 patients with Acanthamoeba keratitis
Ultrahigh resolution Spectral Domain OCT
A spectrometer based ultrahigh resolution Spectral Domain OCT (SDOCT) system operating at 800 nm for the anterior chamber will be employed in the present study. The spectrum of the Ti:Sapphire laser light source is centered at 800 nm. With a full width at half maximum bandwidth of 170 nm, the axial resolution is 1.3 μm in the cornea. The transverse resolution of the employed OCT system is 21 μm at the front surface of the cornea. For measurement, patients will place their head in a modified slit lamp head rest. During the measurement period, patients will be asked to look straight forward onto an internal fixation target and to avoid blinking. Different scattering patterns, e.g. raster, circular and spiral scans will be employed.
5 patients with aniridia
Ultrahigh resolution Spectral Domain OCT
A spectrometer based ultrahigh resolution Spectral Domain OCT (SDOCT) system operating at 800 nm for the anterior chamber will be employed in the present study. The spectrum of the Ti:Sapphire laser light source is centered at 800 nm. With a full width at half maximum bandwidth of 170 nm, the axial resolution is 1.3 μm in the cornea. The transverse resolution of the employed OCT system is 21 μm at the front surface of the cornea. For measurement, patients will place their head in a modified slit lamp head rest. During the measurement period, patients will be asked to look straight forward onto an internal fixation target and to avoid blinking. Different scattering patterns, e.g. raster, circular and spiral scans will be employed.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Ultrahigh resolution Spectral Domain OCT
A spectrometer based ultrahigh resolution Spectral Domain OCT (SDOCT) system operating at 800 nm for the anterior chamber will be employed in the present study. The spectrum of the Ti:Sapphire laser light source is centered at 800 nm. With a full width at half maximum bandwidth of 170 nm, the axial resolution is 1.3 μm in the cornea. The transverse resolution of the employed OCT system is 21 μm at the front surface of the cornea. For measurement, patients will place their head in a modified slit lamp head rest. During the measurement period, patients will be asked to look straight forward onto an internal fixation target and to avoid blinking. Different scattering patterns, e.g. raster, circular and spiral scans will be employed.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
MGD as evidenced by clinical features and gland expression (MGD Grading Scheme, Appendix I (Opitz, Harthan et al. 2015))
* For cataract patients:
Cataract as evidenced from slit lamp examination, stage range between NII-NIII, CII-CIV, PII-PIII according to The Lens Opacity Classification System II (LOCS II) (Chylack, Leske et al. 1989) (Appendix II)
* For patients after minimally invasive glaucoma surgery (MIGS):
Patients with history of MIGS secondary to glaucoma
* For patients with demodicosis:
Demodicosis as evidenced from slit lamp examination and presence of Demodex confirmed by microscopic examination of the eye lashes (Liu, Sheha et al. 2010)
* For patients with conjunctival pathologies (cyst, naevus, pterygium):
Conjunctival pathologies with a clinical diagnosis of the respective
* For patients with Acanthamoeba keratitis:
Acanthamoeba keratitis as evidenced from slit lamp examination and confirmed by polymerase chain reaction (PCR) analysis of corneal epithelial and tear samples and culture isolation (Lehmann, Green et al. 1998)
* For aniridia patients:
Anirida as evidenced from slit lamp examination
Exclusion Criteria
* Pregnancy, planned pregnancy or lactating
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Medical University of Vienna
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Gerhard Garhofer
Assoc. Prof. Priv.-Doz. Dr.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Medical University Vienna, Department of Clnical Pharmacology
Vienna, Vienna, Austria
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Wojtkowski M, Kaluzny B, Zawadzki RJ. New directions in ophthalmic optical coherence tomography. Optom Vis Sci. 2012 May;89(5):524-42. doi: 10.1097/OPX.0b013e31824eecb2.
Drexler W, Liu M, Kumar A, Kamali T, Unterhuber A, Leitgeb RA. Optical coherence tomography today: speed, contrast, and multimodality. J Biomed Opt. 2014;19(7):071412. doi: 10.1117/1.JBO.19.7.071412.
Werkmeister RM, Alex A, Kaya S, Unterhuber A, Hofer B, Riedl J, Bronhagl M, Vietauer M, Schmidl D, Schmoll T, Garhofer G, Drexler W, Leitgeb RA, Groeschl M, Schmetterer L. Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci. 2013 Aug 15;54(8):5578-83. doi: 10.1167/iovs.13-11920.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
OPHT - 010616
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.