Evaluating Monitoring Techniques for Postoperative Spinal Cord Ischemia
NCT ID: NCT03074487
Last Updated: 2025-10-01
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
50 participants
OBSERVATIONAL
2017-01-31
2025-04-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Intraoperatively, motor evoked potentials (MEP) are elicited to measure the functional integrity of the spinal cord. MEPs have proven to be a reliable marker of spinal cord ischemia. Moreover, these potentials react within minutes, which facilitates interventions to restore the blood flow. Monitoring intraoperatively with this ancillary test has reduced the rate of paraparesis to \< 5%. Unfortunately, in the early postoperative period, spinal cord vulnerability is high. Therefore, some patients develop paraparesis, not during the surgical procedure, but after the surgical procedure. Postoperatively, suboptimal blood flow may lead to critical loss of function. This inadequate perfusion results in "delayed paraparesis". In the postoperative patient, it is not possible to measure MEPs when sedation is decreased, due to the high intensity of the electrical stimulus, which is unacceptably painful in the unanesthetized or partially anesthetized patient. Therefore ancillary tests are needed which can detect spinal cord ischemia postoperatively early, thus preceding the phase with clinically overt paraparesis. The test should be reliable and easy to perform for an extended period of time (up to several days).
The purpose of this study is to explore the usefulness of various neurophysiological tests regarding accuracy and feasibility for the detection of spinal cord ischemia. In particular, to find a diagnostic test which is acceptable for the unanesthetized or partially anesthetized patient and therefore can also be performed postoperatively. These tests will be examined in fully sedated as well as partially sedated patients.
The following candidate tests will be examined:
1. Long loop reflexes (LLR) consisting of F-waves.
2. Oxygenation measurements of the paraspinal muscles using Near-infrared spectroscopy (NIRS).
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Prophylactic vs Therapeutic Cerebrospinal Fluid Drain Placement During Endovascular Thoracoabdominal Aortic Aneurysm Repair
NCT04941157
Remote Ischemic PreConditioning (RIPC)
NCT03814850
Doppler Sonography of Cerebral Blood Flow for Early Prognostication After Out-of-hospital Cardiac Arrest
NCT03270683
Risk Factors of Middle Cerebral Artery Aneurysm.
NCT03493035
Non-invasive Measurement of Cerebral Dynamic Autoregulation
NCT02442856
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
CASE_ONLY
PROSPECTIVE
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Near-infrared spectroscopy
Long loop reflex measurements
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Repair using open surgical or endovascular procedure.
* Undergoing monitoring by motor evoked potentials (MEP) as part of the standard surgical procedure.
Exclusion Criteria
* Standard contraindications for motor evoked potential (MEP) monitoring.
* Standard contraindications for electrode placement (skin wounds, etc.)
* No informed consent can be obtained prior to the procedure
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Maastricht University Medical Center
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
MaastrichtUMC
Maastricht, Limburg, Netherlands
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Jacobs MJ, Mess W, Mochtar B, Nijenhuis RJ, Statius van Eps RG, Schurink GW. The value of motor evoked potentials in reducing paraplegia during thoracoabdominal aneurysm repair. J Vasc Surg. 2006 Feb;43(2):239-46. doi: 10.1016/j.jvs.2005.09.042.
Greiner A, Mess WH, Schmidli J, Debus ES, Grommes J, Dick F, Jacobs MJ. Cyber medicine enables remote neuromonitoring during aortic surgery. J Vasc Surg. 2012 May;55(5):1227-32; discussion 1232-3. doi: 10.1016/j.jvs.2011.11.121. Epub 2012 Feb 15.
Armstrong KL, Wood D. Can infant death from child abuse be prevented? Med J Aust. 1992 Feb 17;156(4):290. doi: 10.5694/j.1326-5377.1992.tb139757.x. No abstract available.
Etz CD, Di Luozzo G, Zoli S, Lazala R, Plestis KA, Bodian CA, Griepp RB. Direct spinal cord perfusion pressure monitoring in extensive distal aortic aneurysm repair. Ann Thorac Surg. 2009 Jun;87(6):1764-73; discussion 1773-4. doi: 10.1016/j.athoracsur.2009.02.101.
Jacobs MJ, Mess WH. The role of evoked potential monitoring in operative management of type I and type II thoracoabdominal aortic aneurysms. Semin Thorac Cardiovasc Surg. 2003 Oct;15(4):353-64. doi: 10.1053/s1043-0679(03)00084-4.
Etz CD, von Aspern K, Gudehus S, Luehr M, Girrbach FF, Ender J, Borger M, Mohr FW. Near-infrared spectroscopy monitoring of the collateral network prior to, during, and after thoracoabdominal aortic repair: a pilot study. Eur J Vasc Endovasc Surg. 2013 Dec;46(6):651-6. doi: 10.1016/j.ejvs.2013.08.018. Epub 2013 Sep 5.
Moerman A, Van Herzeele I, Vanpeteghem C, Vermassen F, Francois K, Wouters P. Near-infrared spectroscopy for monitoring spinal cord ischemia during hybrid thoracoabdominal aortic aneurysm repair. J Endovasc Ther. 2011 Feb;18(1):91-5. doi: 10.1583/10-3224.1.
Boezeman RP, van Dongen EP, Morshuis WJ, Sonker U, Boezeman EH, Waanders FG, de Vries JP. Spinal near-infrared spectroscopy measurements during and after thoracoabdominal aortic aneurysm repair: a pilot study. Ann Thorac Surg. 2015 Apr;99(4):1267-74. doi: 10.1016/j.athoracsur.2014.10.032. Epub 2015 Jan 14.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
NL58137.068.16
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.