Study on the Interplay Between Twist1 and Other EMT Regulators Through microRNA-29 Family.

NCT ID: NCT01927354

Last Updated: 2013-09-16

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

UNKNOWN

Total Enrollment

100 participants

Study Classification

OBSERVATIONAL

Study Start Date

2012-12-31

Study Completion Date

2014-03-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Investigation of the molecular mechanism and clinical significance of the interplay between Twist1 and other EMT regulators through microRNA-29 family.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Head and neck squamous cell carcinoma (HNSCC) is one of the leading causes of cancer deaths worldwide, and it ranks the fourth male cancer-related death in Taiwan. In HNSCC, invasiveness and metastasis of cancer cells contribute to the major cause of mortality; therefore, elucidation of the mechanism and development of new strategies against metastasis is the utmost importance in treating advanced HNSCC. Epithelial-mesenchymal transition (EMT) is a process by which epithelial cells lose their polarity and are converted to a mesenchymal phenotype, and recently is considered as the major mechanism for cancer metastasis. The initiation of EMT is hallmarked by suppression of the intercellular junctional protein E-cadherin by a variety of transcriptional factors, including Twist1, Snail, Slug, SIP1, Zeb1 and E47. However, during metastatic evolution, the interplay between different EMT inducers has been investigated limitedly. Previously study demonstrated that hypoxia induces EMT of HNSCC through induction of Twist1 expression. Additionally showed that Twist1 promotes EMT and tumor-initiating capability through upregulation of Bmi1, and co-expression Twist1 and Bmi1 predicts a worse prognosis of HNSCC cases. Accumulated evidence suggests that microRNAs play essential roles in cancer progression and metastasis. Therefore, we aim to investigate the role of microRNA in Twist1-mediated cancer metastasis, and the interplay between Twist1 and other EMT regulators. Our preliminary data showed that the expression of miR-29 family, including miR-29a, b, and c were increased in Twist1-overexpressing HNSCC cells. Furthermore, we discovered that SIN3A, a co-repressor of another EMT regulator Snail, is a target of miR-29s. We therefore speculate that Twist1 modifies the function of Snail through microRNA machinery. In this proposal, we will delineate the regulatory mechanism of the Twist1-miR29s-SIN3A axis. We will also investigate the molecular interplay between Twist1 and Snail through Twist1-miR29s-SIN3A signal pathway. Furthermore, we will elucidate the molecular basis and pathophysiologic significance of Twist1-Snail interaction under hypoxic environment. Finally, we will confirm the in vitro finding by in vivo animal study and HNSCC samples. These results will provide crucial information for understanding the molecular basis of HNSCC metastasis, and will be valuable for developing new therapeutic strategies against advanced HNSCC.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Head-and-Neck Squamous Cell Carcinoma

Keywords

Explore important study keywords that can help with search, categorization, and topic discovery.

Head-and-Neck squamous cell carcinoma (HNSCC) epithelial-mesenchymal transition (EMT) microRNA29 Twist1

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Head and neck cancer

Subjects who suffer from oral cancer. Collect a 0.5x0.5Cm2 tissue sample of the tumor during the surgery.

No interventions assigned to this group

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Head and neck cancer

Exclusion Criteria

* pregnant woman
Minimum Eligible Age

20 Years

Maximum Eligible Age

80 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

National Taiwan University Hospital

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Shin-Jung Cheng, DDS, MS, PhD

Role: PRINCIPAL_INVESTIGATOR

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

National Taiwan University Hospital research Ethics Committee

Taipei, , Taiwan

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

Taiwan

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Shin-Jung Cheng, DDS, MS, PhD

Role: CONTACT

Phone: +886 2 29251733

Email: [email protected]

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Shin-Jung Cheng, DDS, MS, PhD

Role: primary

References

Explore related publications, articles, or registry entries linked to this study.

Department of health, the Executive Yuan, R.O.C. Cancer Registry Annual Report in Taiwan area, 2007. Goldenberg D, Lee J, Koch WM, et al.

Reference Type BACKGROUND

Goldenberg D, Lee J, Koch WM, Kim MM, Trink B, Sidransky D, Moon CS. Habitual risk factors for head and neck cancer. Otolaryngol Head Neck Surg. 2004 Dec;131(6):986-93. doi: 10.1016/j.otohns.2004.02.035.

Reference Type BACKGROUND
PMID: 15577802 (View on PubMed)

Haffty BG. Concurrent chemoradiation in the treatment of head and neck cancer. Hematol Oncol Clin North Am. 1999 Aug;13(4):719-42, vi-vii. doi: 10.1016/s0889-8588(05)70088-5.

Reference Type BACKGROUND
PMID: 10494509 (View on PubMed)

Gilbert J, Forastiere AA. Organ preservation trials for laryngeal cancer. Otolaryngol Clin North Am. 2002 Oct;35(5):1035-54, vi. doi: 10.1016/s0030-6665(02)00035-x.

Reference Type BACKGROUND
PMID: 12587246 (View on PubMed)

Fanucchi M, Khuri FR. Chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck. Semin Oncol. 2004 Dec;31(6):809-15. doi: 10.1053/j.seminoncol.2004.09.014.

Reference Type BACKGROUND
PMID: 15599859 (View on PubMed)

Papadimitrakopoulou VA, Izzo J, Mao L, Keck J, Hamilton D, Shin DM, El-Naggar A, den Hollander P, Liu D, Hittelman WN, Hong WK. Cyclin D1 and p16 alterations in advanced premalignant lesions of the upper aerodigestive tract: role in response to chemoprevention and cancer development. Clin Cancer Res. 2001 Oct;7(10):3127-34.

Reference Type BACKGROUND
PMID: 11595705 (View on PubMed)

Farrar M, Sandison A, Peston D, Gailani M. Immunocytochemical analysis of AE1/AE3, CK 14, Ki-67 and p53 expression in benign, premalignant and malignant oral tissue to establish putative markers for progression of oral carcinoma. Br J Biomed Sci. 2004;61(3):117-24. doi: 10.1080/09674845.2004.11732655.

Reference Type BACKGROUND
PMID: 15462255 (View on PubMed)

Gold KA, Lee HY, Kim ES. Targeted therapies in squamous cell carcinoma of the head and neck. Cancer. 2009 Mar 1;115(5):922-35. doi: 10.1002/cncr.24123.

Reference Type BACKGROUND
PMID: 19156911 (View on PubMed)

Nathan CO, Amirghahari N, Abreo F, Rong X, Caldito G, Jones ML, Zhou H, Smith M, Kimberly D, Glass J. Overexpressed eIF4E is functionally active in surgical margins of head and neck cancer patients via activation of the Akt/mammalian target of rapamycin pathway. Clin Cancer Res. 2004 Sep 1;10(17):5820-7. doi: 10.1158/1078-0432.CCR-03-0483.

Reference Type BACKGROUND
PMID: 15355912 (View on PubMed)

Nakayama H, Ikebe T, Beppu M, Shirasuna K. High expression levels of nuclear factor kappaB, IkappaB kinase alpha and Akt kinase in squamous cell carcinoma of the oral cavity. Cancer. 2001 Dec 15;92(12):3037-44. doi: 10.1002/1097-0142(20011215)92:123.0.co;2-#.

Reference Type BACKGROUND
PMID: 11753981 (View on PubMed)

Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002 Jun;2(6):442-54. doi: 10.1038/nrc822. No abstract available.

Reference Type BACKGROUND
PMID: 12189386 (View on PubMed)

Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B, Saito Y, Johnson RS, Kretzler M, Cohen CD, Eckardt KU, Iwano M, Haase VH. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest. 2007 Dec;117(12):3810-20. doi: 10.1172/JCI30487.

Reference Type BACKGROUND
PMID: 18037992 (View on PubMed)

Thompson EW, Newgreen DF, Tarin D. Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition? Cancer Res. 2005 Jul 15;65(14):5991-5; discussion 5995. doi: 10.1158/0008-5472.CAN-05-0616. No abstract available.

Reference Type BACKGROUND
PMID: 16024595 (View on PubMed)

Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006 Feb;7(2):131-42. doi: 10.1038/nrm1835.

Reference Type BACKGROUND
PMID: 16493418 (View on PubMed)

Tamura G, Yin J, Wang S, Fleisher AS, Zou T, Abraham JM, Kong D, Smolinski KN, Wilson KT, James SP, Silverberg SG, Nishizuka S, Terashima M, Motoyama T, Meltzer SJ. E-Cadherin gene promoter hypermethylation in primary human gastric carcinomas. J Natl Cancer Inst. 2000 Apr 5;92(7):569-73. doi: 10.1093/jnci/92.7.569.

Reference Type BACKGROUND
PMID: 10749913 (View on PubMed)

Peinado H, Ballestar E, Esteller M, Cano A. Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol. 2004 Jan;24(1):306-19. doi: 10.1128/MCB.24.1.306-319.2004.

Reference Type BACKGROUND
PMID: 14673164 (View on PubMed)

Blanco MJ, Moreno-Bueno G, Sarrio D, Locascio A, Cano A, Palacios J, Nieto MA. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene. 2002 May 9;21(20):3241-6. doi: 10.1038/sj.onc.1205416.

Reference Type BACKGROUND
PMID: 12082640 (View on PubMed)

Elloul S, Elstrand MB, Nesland JM, Trope CG, Kvalheim G, Goldberg I, Reich R, Davidson B. Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer. 2005 Apr 15;103(8):1631-43. doi: 10.1002/cncr.20946.

Reference Type BACKGROUND
PMID: 15742334 (View on PubMed)

Shih JY, Tsai MF, Chang TH, Chang YL, Yuan A, Yu CJ, Lin SB, Liou GY, Lee ML, Chen JJ, Hong TM, Yang SC, Su JL, Lee YC, Yang PC. Transcription repressor slug promotes carcinoma invasion and predicts outcome of patients with lung adenocarcinoma. Clin Cancer Res. 2005 Nov 15;11(22):8070-8. doi: 10.1158/1078-0432.CCR-05-0687.

Reference Type BACKGROUND
PMID: 16299238 (View on PubMed)

Rosivatz E, Becker I, Specht K, Fricke E, Luber B, Busch R, Hofler H, Becker KF. Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am J Pathol. 2002 Nov;161(5):1881-91. doi: 10.1016/S0002-9440(10)64464-1.

Reference Type BACKGROUND
PMID: 12414534 (View on PubMed)

Pena C, Garcia JM, Garcia V, Silva J, Dominguez G, Rodriguez R, Maximiano C, Garcia de Herreros A, Munoz A, Bonilla F. The expression levels of the transcriptional regulators p300 and CtBP modulate the correlations between SNAIL, ZEB1, E-cadherin and vitamin D receptor in human colon carcinomas. Int J Cancer. 2006 Nov 1;119(9):2098-104. doi: 10.1002/ijc.22083.

Reference Type BACKGROUND
PMID: 16804902 (View on PubMed)

Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006 Nov 17;127(4):679-95. doi: 10.1016/j.cell.2006.11.001.

Reference Type BACKGROUND
PMID: 17110329 (View on PubMed)

Harris AL. Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer. 2002 Jan;2(1):38-47. doi: 10.1038/nrc704.

Reference Type BACKGROUND
PMID: 11902584 (View on PubMed)

Semenza GL. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med. 2002;8(4 Suppl):S62-7. doi: 10.1016/s1471-4914(02)02317-1.

Reference Type BACKGROUND
PMID: 11927290 (View on PubMed)

Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007 Jun;7(6):415-28. doi: 10.1038/nrc2131. Epub 2007 May 17.

Reference Type BACKGROUND
PMID: 17508028 (View on PubMed)

Imai T, Horiuchi A, Wang C, Oka K, Ohira S, Nikaido T, Konishi I. Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. Am J Pathol. 2003 Oct;163(4):1437-47. doi: 10.1016/S0002-9440(10)63501-8.

Reference Type BACKGROUND
PMID: 14507651 (View on PubMed)

Krishnamachary B, Zagzag D, Nagasawa H, Rainey K, Okuyama H, Baek JH, Semenza GL. Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res. 2006 Mar 1;66(5):2725-31. doi: 10.1158/0008-5472.CAN-05-3719.

Reference Type BACKGROUND
PMID: 16510593 (View on PubMed)

Evans AJ, Russell RC, Roche O, Burry TN, Fish JE, Chow VW, Kim WY, Saravanan A, Maynard MA, Gervais ML, Sufan RI, Roberts AM, Wilson LA, Betten M, Vandewalle C, Berx G, Marsden PA, Irwin MS, Teh BT, Jewett MA, Ohh M. VHL promotes E2 box-dependent E-cadherin transcription by HIF-mediated regulation of SIP1 and snail. Mol Cell Biol. 2007 Jan;27(1):157-69. doi: 10.1128/MCB.00892-06. Epub 2006 Oct 23.

Reference Type BACKGROUND
PMID: 17060462 (View on PubMed)

Ip YT, Park RE, Kosman D, Yazdanbakhsh K, Levine M. dorsal-twist interactions establish snail expression in the presumptive mesoderm of the Drosophila embryo. Genes Dev. 1992 Aug;6(8):1518-30. doi: 10.1101/gad.6.8.1518.

Reference Type BACKGROUND
PMID: 1644293 (View on PubMed)

Yang MH, Chen CL, Chau GY, Chiou SH, Su CW, Chou TY, Peng WL, Wu JC. Comprehensive analysis of the independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma. Hepatology. 2009 Nov;50(5):1464-74. doi: 10.1002/hep.23221.

Reference Type BACKGROUND
PMID: 19821482 (View on PubMed)

Ogawa H, Nozawa Y, Rojanavanich V, Tsuboi R, Yoshiike T, Banno Y, Takahashi M, Nombela C, Herreros E, Garcia-Saez MI, et al. Fungal enzymes in the pathogenesis of fungal infections. J Med Vet Mycol. 1992;30 Suppl 1:189-96. doi: 10.1080/02681219280000881. No abstract available.

Reference Type BACKGROUND
PMID: 1474443 (View on PubMed)

Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2999-3004. doi: 10.1073/pnas.0307323101. Epub 2004 Feb 18.

Reference Type BACKGROUND
PMID: 14973191 (View on PubMed)

Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. MicroRNA expression profiles classify human cancers. Nature. 2005 Jun 9;435(7043):834-8. doi: 10.1038/nature03702.

Reference Type BACKGROUND
PMID: 15944708 (View on PubMed)

Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008 May;10(5):593-601. doi: 10.1038/ncb1722. Epub 2008 Mar 30.

Reference Type BACKGROUND
PMID: 18376396 (View on PubMed)

Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS, Cheng JQ. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol. 2008 Nov;28(22):6773-84. doi: 10.1128/MCB.00941-08. Epub 2008 Sep 15.

Reference Type BACKGROUND
PMID: 18794355 (View on PubMed)

Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC, Brock JE, Richardson AL, Weinberg RA. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 2009 Jun 12;137(6):1032-46. doi: 10.1016/j.cell.2009.03.047.

Reference Type BACKGROUND
PMID: 19524507 (View on PubMed)

Han YC, Park CY, Bhagat G, Zhang J, Wang Y, Fan JB, Liu M, Zou Y, Weissman IL, Gu H. microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J Exp Med. 2010 Mar 15;207(3):475-89. doi: 10.1084/jem.20090831. Epub 2010 Mar 8.

Reference Type BACKGROUND
PMID: 20212066 (View on PubMed)

Gebeshuber CA, Zatloukal K, Martinez J. miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep. 2009 Apr;10(4):400-5. doi: 10.1038/embor.2009.9. Epub 2009 Feb 27.

Reference Type BACKGROUND
PMID: 19247375 (View on PubMed)

Xiong Y, Fang JH, Yun JP, Yang J, Zhang Y, Jia WH, Zhuang SM. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology. 2010 Mar;51(3):836-45. doi: 10.1002/hep.23380.

Reference Type BACKGROUND
PMID: 20041405 (View on PubMed)

Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E, Schwind S, Pang J, Yu J, Muthusamy N, Havelange V, Volinia S, Blum W, Rush LJ, Perrotti D, Andreeff M, Bloomfield CD, Byrd JC, Chan K, Wu LC, Croce CM, Marcucci G. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood. 2009 Jun 18;113(25):6411-8. doi: 10.1182/blood-2008-07-170589. Epub 2009 Feb 11.

Reference Type BACKGROUND
PMID: 19211935 (View on PubMed)

Liu S, Wu LC, Pang J, Santhanam R, Schwind S, Wu YZ, Hickey CJ, Yu J, Becker H, Maharry K, Radmacher MD, Li C, Whitman SP, Mishra A, Stauffer N, Eiring AM, Briesewitz R, Baiocchi RA, Chan KK, Paschka P, Caligiuri MA, Byrd JC, Croce CM, Bloomfield CD, Perrotti D, Garzon R, Marcucci G. Sp1/NFkappaB/HDAC/miR-29b regulatory network in KIT-driven myeloid leukemia. Cancer Cell. 2010 Apr 13;17(4):333-47. doi: 10.1016/j.ccr.2010.03.008.

Reference Type BACKGROUND
PMID: 20385359 (View on PubMed)

Mott JL, Kurita S, Cazanave SC, Bronk SF, Werneburg NW, Fernandez-Zapico ME. Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB. J Cell Biochem. 2010 Aug 1;110(5):1155-64. doi: 10.1002/jcb.22630.

Reference Type BACKGROUND
PMID: 20564213 (View on PubMed)

Hsu DS, Lan HY, Huang CH, Tai SK, Chang SY, Tsai TL, Chang CC, Tzeng CH, Wu KJ, Kao JY, Yang MH. Regulation of excision repair cross-complementation group 1 by Snail contributes to cisplatin resistance in head and neck cancer. Clin Cancer Res. 2010 Sep 15;16(18):4561-71. doi: 10.1158/1078-0432.CCR-10-0593. Epub 2010 Sep 7.

Reference Type BACKGROUND
PMID: 20823140 (View on PubMed)

Lin T, Ponn A, Hu X, Law BK, Lu J. Requirement of the histone demethylase LSD1 in Snai1-mediated transcriptional repression during epithelial-mesenchymal transition. Oncogene. 2010 Sep 2;29(35):4896-904. doi: 10.1038/onc.2010.234. Epub 2010 Jun 21.

Reference Type BACKGROUND
PMID: 20562920 (View on PubMed)

Lan L, Han H, Zuo H, Chen Z, Du Y, Zhao W, Gu J, Zhang Z. Upregulation of myosin Va by Snail is involved in cancer cell migration and metastasis. Int J Cancer. 2010 Jan 1;126(1):53-64. doi: 10.1002/ijc.24641.

Reference Type BACKGROUND
PMID: 19521958 (View on PubMed)

Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, Enzo E, Guzzardo V, Rondina M, Spruce T, Parenti AR, Daidone MG, Bicciato S, Piccolo S. A MicroRNA targeting dicer for metastasis control. Cell. 2010 Jun 25;141(7):1195-207. doi: 10.1016/j.cell.2010.05.017.

Reference Type BACKGROUND
PMID: 20603000 (View on PubMed)

Parra M, Verdin E. Regulatory signal transduction pathways for class IIa histone deacetylases. Curr Opin Pharmacol. 2010 Aug;10(4):454-60. doi: 10.1016/j.coph.2010.04.004. Epub 2010 May 4.

Reference Type BACKGROUND
PMID: 20447866 (View on PubMed)

Yang MH, Chiang WC, Chou TY, Chang SY, Chen PM, Teng SC, Wu KJ. Increased NBS1 expression is a marker of aggressive head and neck cancer and overexpression of NBS1 contributes to transformation. Clin Cancer Res. 2006 Jan 15;12(2):507-15. doi: 10.1158/1078-0432.CCR-05-1231.

Reference Type RESULT
PMID: 16428493 (View on PubMed)

Yang MH, Hsu DS, Wang HW, Wang HJ, Lan HY, Yang WH, Huang CH, Kao SY, Tzeng CH, Tai SK, Chang SY, Lee OK, Wu KJ. Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol. 2010 Oct;12(10):982-92. doi: 10.1038/ncb2099. Epub 2010 Sep 5.

Reference Type RESULT
PMID: 20818389 (View on PubMed)

Yang MH, Wu KJ. TWIST activation by hypoxia inducible factor-1 (HIF-1): implications in metastasis and development. Cell Cycle. 2008 Jul 15;7(14):2090-6. doi: 10.4161/cc.7.14.6324. Epub 2008 May 21.

Reference Type RESULT
PMID: 18635960 (View on PubMed)

Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ, Teng SC, Wu KJ. Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol. 2008 Mar;10(3):295-305. doi: 10.1038/ncb1691. Epub 2008 Feb 24.

Reference Type RESULT
PMID: 18297062 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

201112085RID

Identifier Type: -

Identifier Source: org_study_id