Transcranial Alternating Current Stimulation (tACS) for the Recovery of Phonological Short-Term Memory in Patients With Aphasia After Stroke
NCT ID: NCT06048159
Last Updated: 2025-05-14
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
NA
120 participants
INTERVENTIONAL
2023-11-06
2033-01-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Transcranial Alternating Current Stimulation (tACS) in Aphasia
NCT04375722
Transcranial Direct Current Stimulation Investigations of Language Processing in Aphasia
NCT04041986
Transcranial Direct Current Stimulation (tDCS) and Intensive Therapy in Aphasia
NCT03510182
Effects of Transcranial Direct Current Stimulation (tDCS) on Language
NCT04166513
Neurostimulation for the Treatment of Post-Stroke Aphasia
NCT05194566
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The current study will investigate the efficacy of high-definition tACS (HD-tACS) to help restore neural oscillatory activity in stroke survivors with aphasia. TACS differs from trancranial direct current stimulation (tDCS), a widely used brain stimulation paradigm, in that sinusoidal or alternating currents are delivered rather than direct currents. TACS is shown to manipulate ongoing oscillatory brain activity and also to modulate synchronization (or connectivity) between targeted brain areas. This feature of tACS is quite attractive, given the new body of evidence suggesting that language impairments stem from diminished brain connectivity and ensuing disruptions in the language network due to stroke.
The study will employ high-definition tACS (HD-tACS) in a parallel, double-blinded, sham-controlled design combined with language therapy targeting phonological short-term memory (STM) function in stroke survivors with aphasia. Magnetoencephalography (MEG) and fMRI BOLD data collection will occur to determine tACS parameters and to evaluate stimulation-induced neural changes, respectively. The investigators plan to recruit 120 stroke survivors with aphasia in a 2-group tACS study design.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
TRIPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
High Definition tACS with Short-term Memory Focused Speech Therapy
High-Definition-tACS will be delivered via a battery operated alternating current stimulator (Soterix) using two 3x1 center-surround montages.The current is turned on and increased in a ramplike fashion over approximately 30 seconds. Participants will undergo tACS stimulation for 20-minutes with 2 milliampere (mA) peak-to-peak intensity. Stimulation will be maintained no longer than 20 minutes. This will be paired with short-term memory focused speech therapy.
HD-tACS
High definition tACS will be applied during speech therapy.
Sham-High Definition tACS with Short-term Memory Focused Speech Therapy
High-Definition-tACS will be delivered via a battery operated alternating current stimulator (Soterix) using two 3x1 center-surround montages. The current is turned on and increased in a ramplike fashion for 10 to 30 seconds and then ramped down. In this way, the participants experience the same initial sensations (mild tingling) as the active tACS groups. This will be paired with short-term memory focused speech therapy.
Sham HD-tACS
Sham high definition tACS will be applied during speech therapy.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
HD-tACS
High definition tACS will be applied during speech therapy.
Sham HD-tACS
Sham high definition tACS will be applied during speech therapy.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Consent date \>= 1 month after stroke onset
* Fluent in English
* 18 years of age or older
Exclusion Criteria
* Presence of major untreated or unstable psychiatric disease
* A chronic medical condition that is not treated or is unstable
* The presence of cardiac stimulators or pacemakers
* Contraindications to MRI or tACS, e.g. patients with metallic implants, and/or history of skull fractures, pregnancy, skin diseases
* History of ongoing or unmanaged seizures
* History of dyslexia or other developmental learning disabilities
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Medical College of Wisconsin
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Priyanka Shah-Basak, PhD
Principal Investigator
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Medical College of Wisconsin
Milwaukee, Wisconsin, United States
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Pedersen PM, Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS. Aphasia in acute stroke: incidence, determinants, and recovery. Ann Neurol. 1995 Oct;38(4):659-66. doi: 10.1002/ana.410380416.
Engelter ST, Gostynski M, Papa S, Frei M, Born C, Ajdacic-Gross V, Gutzwiller F, Lyrer PA. Epidemiology of aphasia attributable to first ischemic stroke: incidence, severity, fluency, etiology, and thrombolysis. Stroke. 2006 Jun;37(6):1379-84. doi: 10.1161/01.STR.0000221815.64093.8c. Epub 2006 May 11.
Shah-Basak PP, Norise C, Garcia G, Torres J, Faseyitan O, Hamilton RH. Individualized treatment with transcranial direct current stimulation in patients with chronic non-fluent aphasia due to stroke. Front Hum Neurosci. 2015 Apr 21;9:201. doi: 10.3389/fnhum.2015.00201. eCollection 2015.
Shah-Basak PP, Wurzman R, Purcell JB, Gervits F, Hamilton R. Fields or flows? A comparative metaanalysis of transcranial magnetic and direct current stimulation to treat post-stroke aphasia. Restor Neurol Neurosci. 2016 May 2;34(4):537-58. doi: 10.3233/RNN-150616.
Boyle M. Semantic feature analysis treatment for anomia in two fluent aphasia syndromes. Am J Speech Lang Pathol. 2004 Aug;13(3):236-49. doi: 10.1044/1058-0360(2004/025).
Leonard, C., Rochon, E., & Laird, L. (2008). Treating naming impairments in aphasia: Findings from a phonological components analysis treatment. Aphasiology, 22, 923-947. https://doi.org/10.1080/02687030701831474
Paulesu E, Frith CD, Frackowiak RS. The neural correlates of the verbal component of working memory. Nature. 1993 Mar 25;362(6418):342-5. doi: 10.1038/362342a0.
Buchsbaum BR, Olsen RK, Koch P, Berman KF. Human dorsal and ventral auditory streams subserve rehearsal-based and echoic processes during verbal working memory. Neuron. 2005 Nov 23;48(4):687-97. doi: 10.1016/j.neuron.2005.09.029.
Buchsbaum BR, Baldo J, Okada K, Berman KF, Dronkers N, D'Esposito M, Hickok G. Conduction aphasia, sensory-motor integration, and phonological short-term memory - an aggregate analysis of lesion and fMRI data. Brain Lang. 2011 Dec;119(3):119-28. doi: 10.1016/j.bandl.2010.12.001. Epub 2011 Jan 21.
Antal A, Paulus W. Transcranial alternating current stimulation (tACS). Front Hum Neurosci. 2013 Jun 28;7:317. doi: 10.3389/fnhum.2013.00317. Print 2013.
Helfrich RF, Schneider TR, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS. Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol. 2014 Feb 3;24(3):333-9. doi: 10.1016/j.cub.2013.12.041. Epub 2014 Jan 23.
Violante IR, Li LM, Carmichael DW, Lorenz R, Leech R, Hampshire A, Rothwell JC, Sharp DJ. Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance. Elife. 2017 Mar 14;6:e22001. doi: 10.7554/eLife.22001.
Herrmann CS, Rach S, Neuling T, Struber D. Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front Hum Neurosci. 2013 Jun 14;7:279. doi: 10.3389/fnhum.2013.00279. eCollection 2013.
Benson, D. F., & Ardila, A. (1996). Aphasia: A Clinical Perspective. Oxford University Press.
Code C, Petheram B. Delivering for aphasia. Int J Speech Lang Pathol. 2011 Feb;13(1):3-10. doi: 10.3109/17549507.2010.520090.
Brooks SK, Webster RK, Smith LE, Woodland L, Wessely S, Greenberg N, Rubin GJ. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet. 2020 Mar 14;395(10227):912-920. doi: 10.1016/S0140-6736(20)30460-8. Epub 2020 Feb 26.
Pietrabissa G, Simpson SG. Psychological Consequences of Social Isolation During COVID-19 Outbreak. Front Psychol. 2020 Sep 9;11:2201. doi: 10.3389/fpsyg.2020.02201. eCollection 2020.
Pollock A, St George B, Fenton M, Firkins L. Top 10 research priorities relating to life after stroke--consensus from stroke survivors, caregivers, and health professionals. Int J Stroke. 2014 Apr;9(3):313-20. doi: 10.1111/j.1747-4949.2012.00942.x. Epub 2012 Dec 11.
Ellis C, Simpson AN, Bonilha H, Mauldin PD, Simpson KN. The one-year attributable cost of poststroke aphasia. Stroke. 2012 May;43(5):1429-31. doi: 10.1161/STROKEAHA.111.647339. Epub 2012 Feb 16.
Pillay SB, Stengel BC, Humphries C, Book DS, Binder JR. Cerebral localization of impaired phonological retrieval during rhyme judgment. Ann Neurol. 2014 Nov;76(5):738-46. doi: 10.1002/ana.24266. Epub 2014 Sep 19.
Mirman D, Chen Q, Zhang Y, Wang Z, Faseyitan OK, Coslett HB, Schwartz MF. Neural organization of spoken language revealed by lesion-symptom mapping. Nat Commun. 2015 Apr 16;6:6762. doi: 10.1038/ncomms7762.
Saffran EM, Marin OS. Reading without phonology: evidence from aphasia. Q J Exp Psychol. 1977 Aug;29(3):515-25. doi: 10.1080/14640747708400627. No abstract available.
Friedrich FJ, Glenn CG, Marin OS. Interruption of phonological coding in conduction aphasia. Brain Lang. 1984 Jul;22(2):266-91. doi: 10.1016/0093-934x(84)90094-4.
Pillay SB, Gross WL, Heffernan J, Book DS, Binder JR. Semantic network activation facilitates oral word reading in chronic aphasia. Brain Lang. 2022 Oct;233:105164. doi: 10.1016/j.bandl.2022.105164. Epub 2022 Aug 4.
Pillay SB, Gross WL, Graves WW, Humphries C, Book DS, Binder JR. The Neural Basis of Successful Word Reading in Aphasia. J Cogn Neurosci. 2018 Apr;30(4):514-525. doi: 10.1162/jocn_a_01214. Epub 2017 Dec 6.
Binder JR, Desai RH, Graves WW, Conant LL. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex. 2009 Dec;19(12):2767-96. doi: 10.1093/cercor/bhp055. Epub 2009 Mar 27.
Baddeley, A. D. (1986). Working memory. Clarendon Press ; Oxford University Press.
Baddeley A, Gathercole S, Papagno C. The phonological loop as a language learning device. Psychol Rev. 1998 Jan;105(1):158-73. doi: 10.1037/0033-295x.105.1.158.
Zaehle T, Rach S, Herrmann CS. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One. 2010 Nov 1;5(11):e13766. doi: 10.1371/journal.pone.0013766.
Reinhart RMG, Nguyen JA. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat Neurosci. 2019 May;22(5):820-827. doi: 10.1038/s41593-019-0371-x. Epub 2019 Apr 8.
Riddle J, Frohlich F. Targeting neural oscillations with transcranial alternating current stimulation. Brain Res. 2021 Aug 15;1765:147491. doi: 10.1016/j.brainres.2021.147491. Epub 2021 Apr 20.
Frohlich F, Riddle J. Conducting double-blind placebo-controlled clinical trials of transcranial alternating current stimulation (tACS). Transl Psychiatry. 2021 May 12;11(1):284. doi: 10.1038/s41398-021-01391-x.
Brittain JS, Probert-Smith P, Aziz TZ, Brown P. Tremor suppression by rhythmic transcranial current stimulation. Curr Biol. 2013 Mar 4;23(5):436-40. doi: 10.1016/j.cub.2013.01.068. Epub 2013 Feb 14.
Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006 Apr;117(4):845-50. doi: 10.1016/j.clinph.2005.12.003. Epub 2006 Jan 19.
Bikson M, Brunoni AR, Charvet LE, Clark VP, Cohen LG, Deng ZD, Dmochowski J, Edwards DJ, Frohlich F, Kappenman ES, Lim KO, Loo C, Mantovani A, McMullen DP, Parra LC, Pearson M, Richardson JD, Rumsey JM, Sehatpour P, Sommers D, Unal G, Wassermann EM, Woods AJ, Lisanby SH. Rigor and reproducibility in research with transcranial electrical stimulation: An NIMH-sponsored workshop. Brain Stimul. 2018 May-Jun;11(3):465-480. doi: 10.1016/j.brs.2017.12.008. Epub 2017 Dec 29.
Wilson SM, Eriksson DK, Schneck SM, Lucanie JM. A quick aphasia battery for efficient, reliable, and multidimensional assessment of language function. PLoS One. 2018 Feb 9;13(2):e0192773. doi: 10.1371/journal.pone.0192773. eCollection 2018.
Pillay, S. B., & Binder, J. R. (n.d.). Language Imaging Lab (LIL) Aphasia Battery. https://wwwneuromcwedu/aphasiabattery/indexhtml
Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011;2011:156869. doi: 10.1155/2011/156869. Epub 2010 Dec 23.
Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Goj R, Jas M, Brooks T, Parkkonen L, Hamalainen M. MEG and EEG data analysis with MNE-Python. Front Neurosci. 2013 Dec 26;7:267. doi: 10.3389/fnins.2013.00267. eCollection 2013 Dec 26.
Villamar MF, Volz MS, Bikson M, Datta A, Dasilva AF, Fregni F. Technique and considerations in the use of 4x1 ring high-definition transcranial direct current stimulation (HD-tDCS). J Vis Exp. 2013 Jul 14;(77):e50309. doi: 10.3791/50309.
Pruim RHR, Mennes M, van Rooij D, Llera A, Buitelaar JK, Beckmann CF. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. Neuroimage. 2015 May 15;112:267-277. doi: 10.1016/j.neuroimage.2015.02.064. Epub 2015 Mar 11.
Kielar A, Panamsky L, Links KA, Meltzer JA. Localization of electrophysiological responses to semantic and syntactic anomalies in language comprehension with MEG. Neuroimage. 2015 Jan 15;105:507-24. doi: 10.1016/j.neuroimage.2014.11.016. Epub 2014 Nov 14.
Maris E, Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods. 2007 Aug 15;164(1):177-90. doi: 10.1016/j.jneumeth.2007.03.024. Epub 2007 Apr 10.
Saturnino GB, Puonti O, Nielsen JD, Antonenko D, Madsen KH, Thielscher A. SimNIBS 2.1: A Comprehensive Pipeline for Individualized Electric Field Modelling for Transcranial Brain Stimulation. 2019 Aug 28. In: Makarov S, Horner M, Noetscher G, editors. Brain and Human Body Modeling: Computational Human Modeling at EMBC 2018 [Internet]. Cham (CH): Springer; 2019. Chapter 1. Available from http://www.ncbi.nlm.nih.gov/books/NBK549569/
Brunoni AR, Amadera J, Berbel B, Volz MS, Rizzerio BG, Fregni F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychopharmacol. 2011 Sep;14(8):1133-45. doi: 10.1017/S1461145710001690. Epub 2011 Feb 15.
Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, Mourdoukoutas AP, Kronberg G, Truong D, Boggio P, Brunoni AR, Charvet L, Fregni F, Fritsch B, Gillick B, Hamilton RH, Hampstead BM, Jankord R, Kirton A, Knotkova H, Liebetanz D, Liu A, Loo C, Nitsche MA, Reis J, Richardson JD, Rotenberg A, Turkeltaub PE, Woods AJ. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul. 2016 Sep-Oct;9(5):641-661. doi: 10.1016/j.brs.2016.06.004. Epub 2016 Jun 15.
Antal A, Alekseichuk I, Bikson M, Brockmoller J, Brunoni AR, Chen R, Cohen LG, Dowthwaite G, Ellrich J, Floel A, Fregni F, George MS, Hamilton R, Haueisen J, Herrmann CS, Hummel FC, Lefaucheur JP, Liebetanz D, Loo CK, McCaig CD, Miniussi C, Miranda PC, Moliadze V, Nitsche MA, Nowak R, Padberg F, Pascual-Leone A, Poppendieck W, Priori A, Rossi S, Rossini PM, Rothwell J, Rueger MA, Ruffini G, Schellhorn K, Siebner HR, Ugawa Y, Wexler A, Ziemann U, Hallett M, Paulus W. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017 Sep;128(9):1774-1809. doi: 10.1016/j.clinph.2017.06.001. Epub 2017 Jun 19.
Reckow J, Rahman-Filipiak A, Garcia S, Schlaefflin S, Calhoun O, DaSilva AF, Bikson M, Hampstead BM. Tolerability and blinding of 4x1 high-definition transcranial direct current stimulation (HD-tDCS) at two and three milliamps. Brain Stimul. 2018 Sep-Oct;11(5):991-997. doi: 10.1016/j.brs.2018.04.022. Epub 2018 May 4.
Schuhmann T, Kemmerer SK, Duecker F, de Graaf TA, Ten Oever S, De Weerd P, Sack AT. Left parietal tACS at alpha frequency induces a shift of visuospatial attention. PLoS One. 2019 Nov 27;14(11):e0217729. doi: 10.1371/journal.pone.0217729. eCollection 2019.
Deng Y, Reinhart RM, Choi I, Shinn-Cunningham BG. Causal links between parietal alpha activity and spatial auditory attention. Elife. 2019 Nov 29;8:e51184. doi: 10.7554/eLife.51184.
Matsumoto H, Ugawa Y. Adverse events of tDCS and tACS: A review. Clin Neurophysiol Pract. 2016 Dec 21;2:19-25. doi: 10.1016/j.cnp.2016.12.003. eCollection 2017.
National Aphasia Association survey. (2020).
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
PRO00046360
Identifier Type: OTHER
Identifier Source: secondary_id
PRO00046360
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.