V5/MT Stimulation on Reading and Reading-related Measures in Developmental Dyslexia
NCT ID: NCT05972200
Last Updated: 2023-08-04
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
NA
36 participants
INTERVENTIONAL
2023-09-01
2026-08-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
The investigators hypothesized that active tDCS over V5/MT will boost reading skills in children and adolescents with DD. On the contrary, sham (placebo condition) tDCS over V5/MT or active (control condition) tDCS over V1 will not have significant effect in improving reading skills. Further, both active and sham tDCS will be safe and well tolerated.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Restoring Neural Oscillatory Communication in Developmental Dyslexia
NCT05583136
Noninvasive Brain Stimulation to Enhance Reading Comprehension Ability in Adults
NCT05523505
Clinical Treatment of Transcranial Direct Current Stimulation in Older Adolescents With Amblyopia
NCT06760910
Using fMRI to Evaluate Instructional Programs for Children With Developmental Dyslexia
NCT00068835
Assessment of Visual Dyslexia Remediation Protocols - Dyslexia REMEDIATION
NCT05514457
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Replicated structural/functional neuroimaging studies have demonstrated a DD hypoactivation relative to typical readers in the left temporo-occipital regions-critical for the automatic visual processing of word strings or print-and in the left temporo-parietal regions-important for grapheme-to-phoneme mapping.
Moreover, findings from animal models and post mortem studies in humans suggest that DD might also be associated with structural alterations in subcortical sensory pathways, particularly in visual and auditory thalamic nuclei and in their connections with high-order sensory cortices (i.e., the left hemispheric direct Lateral Geniculate Nucleus (LGN)-V5/MT pathway and the left hemispheric direct Medial Geniculate Body (MGB)-mPT pathway). In addition, in adults with DD, left V5/MT-LGN connectivity strength correlated with RAN abilities - a key deficit in DD.
A number of studies have demonstrated the positive effect of transcranial direct current stimulation (tDCS), a non-invasive brain stimulation used for transiently modifying neural activity of target areas, on reading and, particularly, in DD.
However, the few non-invasive brain stimulation studies on improving reading in DD yielded heterogeneous results and this variability might be partly due to the lack of neurobiological understanding of the underlying DD mechanism or to the use of traditional tDCS rather than a more focal technique such as the high-definition tDCS (HD-tDCS).
Starting from this, the aim of the current study is testing the effectiveness of a cutting-edge stimulation technique (i.e., HD-tDCS) in a within-subject experiment involving children and adolescents with DD. Especially, we will work to test i) the specific effect of HD-tDCS over high-order sensory cortices (i.e., V5/MT vs V1) on reading in children with DD; ii) the preconditions and neurobiological mechanisms that lead to high treatment outcomes.
If the stimulation over V5/MT is effective and specifically related to reading improvement, our results could help to i) understand the contribution and neurobiological mechanism of V5/MT in reading of children and adolescents with DD; ii) select criteria for potential responders to non-invasive brain stimulation; iii) develop evidence-based interventions in DD.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
CROSSOVER
TREATMENT
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
HD-tDCS V5/MT, HD-tDCS V1, Sham
1. Active HD-tDCS over V5/MT
2. Active HD-tDCS over V1
3. Sham HD-tDCS over V5/MT or V1
Active HD-tDCS over V5/MT
For HD-tDCS a 4 × 1 montage (Kessler et al., 2013), small circular electrodes (diameter 1 cm) will be used with the anode placed centrally with a current intensity of 1 mA for a total of 20 minutes (30 s ramp up/down). Hereby, the anodal electrode modulates the excitability of the targeted area left V5/MT, whereas the other 4 electrodes return electrical currents that flow away from that area. V5/MT will be localised via published procedures and electrode's placement will be done according to the 10-20 International EEG 10-20 System for electrode placement.
Active HD-tDCS over V1
For HD-tDCS a 4 × 1 montage (Kessler et al., 2013), small circular electrodes (diameter 1 cm) will be used with the anode placed centrally with a current intensity of 1 mA for a total of 20 minutes (30 s ramp up/down). Hereby, the anodal electrode modulates the excitability of the targeted area left V1, whereas the other 4 electrodes return electrical currents that flow away from that area. V1 will be localised via published procedures and electrode's placement will be done according to the 10-20 International EEG 10-20 System for electrode placement.
Sham HD-tDCS over V5/MT or V1
Sham HD-tDCS will be delivered over left V5/MT or left V1. The same electrodes placement as well as the stimulation set-up will be used as in the active stimulation conditions, but the current will be applied for 30 s and will be ramped down (0 mA) during the rest of the session without the participants awareness. .
HD-tDCS V5/MT, Sham, HD-tDCS V1
1. Active HD-tDCS over V5/MT
2. Sham HD-tDCS over V5/MT or V1
3. Active HD-tDCS over V1
Active HD-tDCS over V5/MT
For HD-tDCS a 4 × 1 montage (Kessler et al., 2013), small circular electrodes (diameter 1 cm) will be used with the anode placed centrally with a current intensity of 1 mA for a total of 20 minutes (30 s ramp up/down). Hereby, the anodal electrode modulates the excitability of the targeted area left V5/MT, whereas the other 4 electrodes return electrical currents that flow away from that area. V5/MT will be localised via published procedures and electrode's placement will be done according to the 10-20 International EEG 10-20 System for electrode placement.
Active HD-tDCS over V1
For HD-tDCS a 4 × 1 montage (Kessler et al., 2013), small circular electrodes (diameter 1 cm) will be used with the anode placed centrally with a current intensity of 1 mA for a total of 20 minutes (30 s ramp up/down). Hereby, the anodal electrode modulates the excitability of the targeted area left V1, whereas the other 4 electrodes return electrical currents that flow away from that area. V1 will be localised via published procedures and electrode's placement will be done according to the 10-20 International EEG 10-20 System for electrode placement.
Sham HD-tDCS over V5/MT or V1
Sham HD-tDCS will be delivered over left V5/MT or left V1. The same electrodes placement as well as the stimulation set-up will be used as in the active stimulation conditions, but the current will be applied for 30 s and will be ramped down (0 mA) during the rest of the session without the participants awareness. .
HD-tDCS V1, HD-tDCS V5/MT, Sham
1. Active HD-tDCS over V1
2. Active HD-tDCS over V5/MT
3. Sham HD-tDCS over V5/MT or V1
Active HD-tDCS over V5/MT
For HD-tDCS a 4 × 1 montage (Kessler et al., 2013), small circular electrodes (diameter 1 cm) will be used with the anode placed centrally with a current intensity of 1 mA for a total of 20 minutes (30 s ramp up/down). Hereby, the anodal electrode modulates the excitability of the targeted area left V5/MT, whereas the other 4 electrodes return electrical currents that flow away from that area. V5/MT will be localised via published procedures and electrode's placement will be done according to the 10-20 International EEG 10-20 System for electrode placement.
Active HD-tDCS over V1
For HD-tDCS a 4 × 1 montage (Kessler et al., 2013), small circular electrodes (diameter 1 cm) will be used with the anode placed centrally with a current intensity of 1 mA for a total of 20 minutes (30 s ramp up/down). Hereby, the anodal electrode modulates the excitability of the targeted area left V1, whereas the other 4 electrodes return electrical currents that flow away from that area. V1 will be localised via published procedures and electrode's placement will be done according to the 10-20 International EEG 10-20 System for electrode placement.
Sham HD-tDCS over V5/MT or V1
Sham HD-tDCS will be delivered over left V5/MT or left V1. The same electrodes placement as well as the stimulation set-up will be used as in the active stimulation conditions, but the current will be applied for 30 s and will be ramped down (0 mA) during the rest of the session without the participants awareness. .
HD-tDCS V1, Sham, HD-tDCS V5/MT
1. Active HD-tDCS over V1
2. Sham HD-tDCS over V5/MT or V1
3. Active HD-tDCS over V5/MT
Active HD-tDCS over V5/MT
For HD-tDCS a 4 × 1 montage (Kessler et al., 2013), small circular electrodes (diameter 1 cm) will be used with the anode placed centrally with a current intensity of 1 mA for a total of 20 minutes (30 s ramp up/down). Hereby, the anodal electrode modulates the excitability of the targeted area left V5/MT, whereas the other 4 electrodes return electrical currents that flow away from that area. V5/MT will be localised via published procedures and electrode's placement will be done according to the 10-20 International EEG 10-20 System for electrode placement.
Active HD-tDCS over V1
For HD-tDCS a 4 × 1 montage (Kessler et al., 2013), small circular electrodes (diameter 1 cm) will be used with the anode placed centrally with a current intensity of 1 mA for a total of 20 minutes (30 s ramp up/down). Hereby, the anodal electrode modulates the excitability of the targeted area left V1, whereas the other 4 electrodes return electrical currents that flow away from that area. V1 will be localised via published procedures and electrode's placement will be done according to the 10-20 International EEG 10-20 System for electrode placement.
Sham HD-tDCS over V5/MT or V1
Sham HD-tDCS will be delivered over left V5/MT or left V1. The same electrodes placement as well as the stimulation set-up will be used as in the active stimulation conditions, but the current will be applied for 30 s and will be ramped down (0 mA) during the rest of the session without the participants awareness. .
Sham, HD-tDCS V5/MT, HD-tDCS V1
1. Sham HD-tDCS over V5/MT or V1
2. Active HD-tDCS over V5/MT
3. Active HD-tDCS over V1
Active HD-tDCS over V5/MT
For HD-tDCS a 4 × 1 montage (Kessler et al., 2013), small circular electrodes (diameter 1 cm) will be used with the anode placed centrally with a current intensity of 1 mA for a total of 20 minutes (30 s ramp up/down). Hereby, the anodal electrode modulates the excitability of the targeted area left V5/MT, whereas the other 4 electrodes return electrical currents that flow away from that area. V5/MT will be localised via published procedures and electrode's placement will be done according to the 10-20 International EEG 10-20 System for electrode placement.
Active HD-tDCS over V1
For HD-tDCS a 4 × 1 montage (Kessler et al., 2013), small circular electrodes (diameter 1 cm) will be used with the anode placed centrally with a current intensity of 1 mA for a total of 20 minutes (30 s ramp up/down). Hereby, the anodal electrode modulates the excitability of the targeted area left V1, whereas the other 4 electrodes return electrical currents that flow away from that area. V1 will be localised via published procedures and electrode's placement will be done according to the 10-20 International EEG 10-20 System for electrode placement.
Sham HD-tDCS over V5/MT or V1
Sham HD-tDCS will be delivered over left V5/MT or left V1. The same electrodes placement as well as the stimulation set-up will be used as in the active stimulation conditions, but the current will be applied for 30 s and will be ramped down (0 mA) during the rest of the session without the participants awareness. .
Sham, HD-tDCS V1, HD-tDCS V5/MT
1. Sham HD-tDCS over V5/MT or V1
2. Active HD-tDCS over V1
3. Active HD-tDCS over V5/MT
Active HD-tDCS over V5/MT
For HD-tDCS a 4 × 1 montage (Kessler et al., 2013), small circular electrodes (diameter 1 cm) will be used with the anode placed centrally with a current intensity of 1 mA for a total of 20 minutes (30 s ramp up/down). Hereby, the anodal electrode modulates the excitability of the targeted area left V5/MT, whereas the other 4 electrodes return electrical currents that flow away from that area. V5/MT will be localised via published procedures and electrode's placement will be done according to the 10-20 International EEG 10-20 System for electrode placement.
Active HD-tDCS over V1
For HD-tDCS a 4 × 1 montage (Kessler et al., 2013), small circular electrodes (diameter 1 cm) will be used with the anode placed centrally with a current intensity of 1 mA for a total of 20 minutes (30 s ramp up/down). Hereby, the anodal electrode modulates the excitability of the targeted area left V1, whereas the other 4 electrodes return electrical currents that flow away from that area. V1 will be localised via published procedures and electrode's placement will be done according to the 10-20 International EEG 10-20 System for electrode placement.
Sham HD-tDCS over V5/MT or V1
Sham HD-tDCS will be delivered over left V5/MT or left V1. The same electrodes placement as well as the stimulation set-up will be used as in the active stimulation conditions, but the current will be applied for 30 s and will be ramped down (0 mA) during the rest of the session without the participants awareness. .
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Active HD-tDCS over V5/MT
For HD-tDCS a 4 × 1 montage (Kessler et al., 2013), small circular electrodes (diameter 1 cm) will be used with the anode placed centrally with a current intensity of 1 mA for a total of 20 minutes (30 s ramp up/down). Hereby, the anodal electrode modulates the excitability of the targeted area left V5/MT, whereas the other 4 electrodes return electrical currents that flow away from that area. V5/MT will be localised via published procedures and electrode's placement will be done according to the 10-20 International EEG 10-20 System for electrode placement.
Active HD-tDCS over V1
For HD-tDCS a 4 × 1 montage (Kessler et al., 2013), small circular electrodes (diameter 1 cm) will be used with the anode placed centrally with a current intensity of 1 mA for a total of 20 minutes (30 s ramp up/down). Hereby, the anodal electrode modulates the excitability of the targeted area left V1, whereas the other 4 electrodes return electrical currents that flow away from that area. V1 will be localised via published procedures and electrode's placement will be done according to the 10-20 International EEG 10-20 System for electrode placement.
Sham HD-tDCS over V5/MT or V1
Sham HD-tDCS will be delivered over left V5/MT or left V1. The same electrodes placement as well as the stimulation set-up will be used as in the active stimulation conditions, but the current will be applied for 30 s and will be ramped down (0 mA) during the rest of the session without the participants awareness. .
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Word/nonword/text reading accuracy and/or speed at least 2 Standard Deviations below the mean for school-age;
* nv IQ ≥ 85;
* normal hearing and normal or corrected-to-normal vision.
Exclusion Criteria
* Having a personal history of neurological/medical/genetic diseases;
* Having ongoing drug treatment influencing brain function;
* Having epilepsy o family history of epilepsy.
8 Years
13 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Bambino Gesù Hospital and Research Institute
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Deny Menghini
Head of Psychology Unit
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Bambino Gesù Hospital and Research Institute
Roma, , Italy
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
American Psychiatric Association. Diagnostic and statistical manual of mental disorders (5th ed.): DSM 5. Washington, DC: American Psychiatric Association. 2013.
Snowling, M. Dyslexia, 2nd ed.; Blackwell Publishing: Oxford, UK. 2000.
Wolf M, Bowers PG. The double-deficit hypothesis for the developmental dyslexias. Journal of Educational Psychology. 1999; 91(3): 415-438.
Menghini D, Finzi A, Benassi M, Bolzani R, Facoetti A, Giovagnoli S, Ruffino M, Vicari S. Different underlying neurocognitive deficits in developmental dyslexia: a comparative study. Neuropsychologia. 2010 Mar;48(4):863-72. doi: 10.1016/j.neuropsychologia.2009.11.003. Epub 2009 Nov 10.
Vellutino FR, Fletcher JM, Snowling MJ, Scanlon DM. Specific reading disability (dyslexia): what have we learned in the past four decades? J Child Psychol Psychiatry. 2004 Jan;45(1):2-40. doi: 10.1046/j.0021-9630.2003.00305.x.
Melby-Lervag M, Lyster SA, Hulme C. Phonological skills and their role in learning to read: a meta-analytic review. Psychol Bull. 2012 Mar;138(2):322-52. doi: 10.1037/a0026744. Epub 2012 Jan 16.
Schulte-Korne G, Bruder J. Clinical neurophysiology of visual and auditory processing in dyslexia: a review. Clin Neurophysiol. 2010 Nov;121(11):1794-809. doi: 10.1016/j.clinph.2010.04.028. Epub 2010 May 31.
Vidyasagar TR, Pammer K. Dyslexia: a deficit in visuo-spatial attention, not in phonological processing. Trends Cogn Sci. 2010 Feb;14(2):57-63. doi: 10.1016/j.tics.2009.12.003. Epub 2010 Jan 14.
Franceschini S, Gori S, Ruffino M, Pedrolli K, Facoetti A. A causal link between visual spatial attention and reading acquisition. Curr Biol. 2012 May 8;22(9):814-9. doi: 10.1016/j.cub.2012.03.013. Epub 2012 Apr 5.
Bosse ML, Tainturier MJ, Valdois S. Developmental dyslexia: the visual attention span deficit hypothesis. Cognition. 2007 Aug;104(2):198-230. doi: 10.1016/j.cognition.2006.05.009. Epub 2006 Jul 21.
Stenneken P, Egetemeir J, Schulte-Korne G, Muller HJ, Schneider WX, Finke K. Slow perceptual processing at the core of developmental dyslexia: a parameter-based assessment of visual attention. Neuropsychologia. 2011 Oct;49(12):3454-65. doi: 10.1016/j.neuropsychologia.2011.08.021. Epub 2011 Aug 31.
Giovagnoli G, Vicari S, Tomassetti S, Menghini D. The Role of Visual-Spatial Abilities in Dyslexia: Age Differences in Children's Reading? Front Psychol. 2016 Dec 21;7:1997. doi: 10.3389/fpsyg.2016.01997. eCollection 2016.
Wang Z, Cheng-Lai A, Song Y, Cutting L, Jiang Y, Lin O, Meng X, Zhou X. A perceptual learning deficit in Chinese developmental dyslexia as revealed by visual texture discrimination training. Dyslexia. 2014 Aug;20(3):280-96. doi: 10.1002/dys.1475. Epub 2014 Mar 18.
Bowers PG, Wolf, M. Theoretical links among naming speed, precise timing mechanisms and orthographic skill in dyslexia. Reading and Writing.1993; 51: 69-85.
Richlan F, Kronbichler M, Wimmer H. Meta-analyzing brain dysfunctions in dyslexic children and adults. Neuroimage. 2011 Jun 1;56(3):1735-42. doi: 10.1016/j.neuroimage.2011.02.040. Epub 2011 Feb 19.
Richlan F. Developmental dyslexia: dysfunction of a left hemisphere reading network. Front Hum Neurosci. 2012 May 1;6:120. doi: 10.3389/fnhum.2012.00120. eCollection 2012.
Livingstone MS, Rosen GD, Drislane FW, Galaburda AM. Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):7943-7. doi: 10.1073/pnas.88.18.7943.
Galaburda AM, Menard MT, Rosen GD. Evidence for aberrant auditory anatomy in developmental dyslexia. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8010-3. doi: 10.1073/pnas.91.17.8010.
Giraldo-Chica M, Hegarty JP 2nd, Schneider KA. Morphological differences in the lateral geniculate nucleus associated with dyslexia. Neuroimage Clin. 2015 Mar 20;7:830-6. doi: 10.1016/j.nicl.2015.03.011. eCollection 2015.
Muller-Axt C, Anwander A, von Kriegstein K. Altered Structural Connectivity of the Left Visual Thalamus in Developmental Dyslexia. Curr Biol. 2017 Dec 4;27(23):3692-3698.e4. doi: 10.1016/j.cub.2017.10.034. Epub 2017 Nov 16.
Tschentscher N, Ruisinger A, Blank H, Diaz B, von Kriegstein K. Reduced Structural Connectivity Between Left Auditory Thalamus and the Motion-Sensitive Planum Temporale in Developmental Dyslexia. J Neurosci. 2019 Feb 27;39(9):1720-1732. doi: 10.1523/JNEUROSCI.1435-18.2018. Epub 2019 Jan 14.
Kirimoto H, Ogata K, Onishi H, Oyama M, Goto Y, Tobimatsu S. Transcranial direct current stimulation over the motor association cortex induces plastic changes in ipsilateral primary motor and somatosensory cortices. Clin Neurophysiol. 2011 Apr;122(4):777-83. doi: 10.1016/j.clinph.2010.09.025. Epub 2010 Nov 11.
Turkeltaub PE, Benson J, Hamilton RH, Datta A, Bikson M, Coslett HB. Left lateralizing transcranial direct current stimulation improves reading efficiency. Brain Stimul. 2012 Jul;5(3):201-207. doi: 10.1016/j.brs.2011.04.002. Epub 2011 May 5.
Younger JW, Randazzo Wagner M, Booth JR. Weighing the Cost and Benefit of Transcranial Direct Current Stimulation on Different Reading Subskills. Front Neurosci. 2016 Jun 7;10:262. doi: 10.3389/fnins.2016.00262. eCollection 2016.
Younger JW, Booth JR. Parietotemporal Stimulation Affects Acquisition of Novel Grapheme-Phoneme Mappings in Adult Readers. Front Hum Neurosci. 2018 Mar 23;12:109. doi: 10.3389/fnhum.2018.00109. eCollection 2018.
Heth I, Lavidor M. Improved reading measures in adults with dyslexia following transcranial direct current stimulation treatment. Neuropsychologia. 2015 Apr;70:107-13. doi: 10.1016/j.neuropsychologia.2015.02.022. Epub 2015 Feb 19.
Costanzo F, Varuzza C, Rossi S, Sdoia S, Varvara P, Oliveri M, Koch G, Vicari S, Menghini D. Reading changes in children and adolescents with dyslexia after transcranial direct current stimulation. Neuroreport. 2016 Mar 23;27(5):295-300. doi: 10.1097/WNR.0000000000000536.
Costanzo F, Varuzza C, Rossi S, Sdoia S, Varvara P, Oliveri M, Giacomo K, Vicari S, Menghini D. Evidence for reading improvement following tDCS treatment in children and adolescents with Dyslexia. Restor Neurol Neurosci. 2016;34(2):215-26. doi: 10.3233/RNN-150561.
Costanzo F, Rossi S, Varuzza C, Varvara P, Vicari S, Menghini D. Long-lasting improvement following tDCS treatment combined with a training for reading in children and adolescents with dyslexia. Neuropsychologia. 2019 Jul;130:38-43. doi: 10.1016/j.neuropsychologia.2018.03.016. Epub 2018 Mar 14.
Rios DM, Correia Rios M, Bandeira ID, Queiros Campbell F, de Carvalho Vaz D, Lucena R. Impact of Transcranial Direct Current Stimulation on Reading Skills of Children and Adolescents With Dyslexia. Child Neurol Open. 2018 Oct 4;5:2329048X18798255. doi: 10.1177/2329048X18798255. eCollection 2018.
Lazzaro G, Costanzo F, Varuzza C, Rossi S, De Matteis ME, Vicari S, Menghini D. Individual differences modulate the effects of tDCS on reading in children and adolescents with dyslexia. Scientific Studies of Reading. 2021; 25(6): 1-17.
Lazzaro G, Costanzo F, Varuzza C, Rossi S, Vicari S, Menghini D. Effects of a short, intensive, multi-session tDCS treatment in developmental dyslexia: Preliminary results of a sham-controlled randomized clinical trial. Prog Brain Res. 2021;264:191-210. doi: 10.1016/bs.pbr.2021.01.015.
Battisti A, Lazzaro G, Costanzo F, Varuzza C, Rossi S, Vicari S, Menghini D. Effects of a short and intensive transcranial direct current stimulation treatment in children and adolescents with developmental dyslexia: A crossover clinical trial. Front Psychol. 2022 Sep 9;13:986242. doi: 10.3389/fpsyg.2022.986242. eCollection 2022.
Somma F, Lazzaro G, Rima S, Rainich K, Muller-Axt C, Schmid MC, Vicari S, von Kriegstein K, Menghini D. Detecting the contribution of V5/MT in reading, reading-related tasks, eye-movements and EEG-oscillations in children and adolescents with developmental dyslexia via high-definition tDCS: a protocol study. BMC Psychol. 2025 Jul 7;13(1):744. doi: 10.1186/s40359-025-03036-w.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
3073_OPBG_2023
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.