The Impact of Reactivation During Sleep on the Consolidation of Abstract Information in Humans

NCT ID: NCT05746299

Last Updated: 2025-07-14

Study Results

Results available

Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.

View full results

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

194 participants

Study Classification

INTERVENTIONAL

Study Start Date

2023-03-29

Study Completion Date

2024-06-30

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

In any given cognitive domain, representations of individual elements are not independent but are organized by means of structured relations. Representations of this underlying structure are powerful, allowing generalization and inference in novel environments. In the semantic domain, structure captures associations between different semantic features or concepts (e.g., green, wings, can fly) and is known to influence the development and deterioration of semantic knowledge. The investigators recently found that humans more easily learn novel categories that contain clusters of reliably co-occurring features, revealing an influence of structure on novel category formation. However, a critical unknown is whether learned representations of structure are closely tied to category-specific elements, or whether such representations become abstract to some extent, transformed away from the experienced features. Further, if abstract structural representations do emerge, prior work provides intriguing hints that these representations may require offline consolidation during awake rest or sleep. The investigators have developed a paradigm in which carefully designed graph structures govern the pattern of feature co-occurrences within individual categories. Here the investigators implement a "structure transfer" extension of this paradigm in order to determine whether learning one structured category facilitates learning of a second identically structured category defined by a new set of features. This facilitation would provide evidence that structure representations are abstract to some degree. Aim 1 will use these methods to evaluate whether abstract structural representations emerge immediately during learning. Aim 2 will determine whether these representations persist, or emerge, over a delay, and whether sleep-based consolidation in particular is needed. The role of replay of recent experience during sleep will be evaluated using electroencephalography (EEG) paired with closed-loop targeted memory reactivation (TMR), a technique that enables causal influence over the consolidation of recently learned information in humans. This work will inform and constrain theories of semantic learning as well as theories of structure learning and representation more broadly.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Memory Consolidation

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

BASIC_SCIENCE

Blinding Strategy

SINGLE

Participants

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Immediate Congruent

Participants will learn and be tested on two different semantic categories with the same structure that dictates the co-occurrence of different features.

Group Type EXPERIMENTAL

Congruent vs. Incongruent

Intervention Type BEHAVIORAL

The Congruent vs. Incongruent intervention relates to the feature-based structure of the novel categories (Modular or non-Modular) and whether there is (Congruent) or is not (Incongruent) a match between what was previously learned and the final target category.

Immediate vs. Awake vs. Asleep

Intervention Type BEHAVIORAL

Immediate, Awake, and Sleep refer to either no break, 2.5 hours awake, or 2 hours asleep plus a 30-minute post-nap break to account for sleep inertia between learning and target category.

Immediate Incongruent

Participants will learn and be tested on two different semantic categories with different structures that dictate the co-occurrence of different features.

Group Type EXPERIMENTAL

Congruent vs. Incongruent

Intervention Type BEHAVIORAL

The Congruent vs. Incongruent intervention relates to the feature-based structure of the novel categories (Modular or non-Modular) and whether there is (Congruent) or is not (Incongruent) a match between what was previously learned and the final target category.

Immediate vs. Awake vs. Asleep

Intervention Type BEHAVIORAL

Immediate, Awake, and Sleep refer to either no break, 2.5 hours awake, or 2 hours asleep plus a 30-minute post-nap break to account for sleep inertia between learning and target category.

Awake Incongruent

Participants will learn two different semantic categories, neither of which has a Modular structure. After a 2.5-hour break, they will learn and be tested on a novel semantic category with a Modular structure.

Group Type EXPERIMENTAL

Congruent vs. Incongruent

Intervention Type BEHAVIORAL

The Congruent vs. Incongruent intervention relates to the feature-based structure of the novel categories (Modular or non-Modular) and whether there is (Congruent) or is not (Incongruent) a match between what was previously learned and the final target category.

Immediate vs. Awake vs. Asleep

Intervention Type BEHAVIORAL

Immediate, Awake, and Sleep refer to either no break, 2.5 hours awake, or 2 hours asleep plus a 30-minute post-nap break to account for sleep inertia between learning and target category.

Awake Congruent

Participants will learn two different semantic categories, one of which has a Modular structure. After a 2.5-hour break, they will learn and be tested on a novel semantic category with a Modular structure.

Group Type EXPERIMENTAL

Congruent vs. Incongruent

Intervention Type BEHAVIORAL

The Congruent vs. Incongruent intervention relates to the feature-based structure of the novel categories (Modular or non-Modular) and whether there is (Congruent) or is not (Incongruent) a match between what was previously learned and the final target category.

Immediate vs. Awake vs. Asleep

Intervention Type BEHAVIORAL

Immediate, Awake, and Sleep refer to either no break, 2.5 hours awake, or 2 hours asleep plus a 30-minute post-nap break to account for sleep inertia between learning and target category.

Sleep Incongruent

Participants will learn two different semantic categories, one of which has a Modular structure. After a 2-hour nap opportunity, during which TMR will be used to reactivate the non-Modular category, participants will take a 30-minute break. After the break, they will learn and be tested on a novel semantic category with a Modular structure.

Group Type EXPERIMENTAL

Congruent vs. Incongruent

Intervention Type BEHAVIORAL

The Congruent vs. Incongruent intervention relates to the feature-based structure of the novel categories (Modular or non-Modular) and whether there is (Congruent) or is not (Incongruent) a match between what was previously learned and the final target category.

Immediate vs. Awake vs. Asleep

Intervention Type BEHAVIORAL

Immediate, Awake, and Sleep refer to either no break, 2.5 hours awake, or 2 hours asleep plus a 30-minute post-nap break to account for sleep inertia between learning and target category.

Targeted memory reactivation (TMR)

Intervention Type BEHAVIORAL

Targeted memory reactivation (TMR) is the systematic presentation of sounds during sleep that were associated with certain stimuli during learning and will be administered either during slow wave sleep (SWS) or rapid eye movement (REM) sleep.

Sleep Congruent (SWS)

Participants will learn two different semantic categories, one of which has a Modular structure. After a 2-hour nap opportunity, during which TMR will be used to reactivate the Modular category during slow wave sleep (SWS), participants will take a 30-minute break. After the break, they will learn and be tested on a novel semantic category with a Modular structure.

Group Type EXPERIMENTAL

Congruent vs. Incongruent

Intervention Type BEHAVIORAL

The Congruent vs. Incongruent intervention relates to the feature-based structure of the novel categories (Modular or non-Modular) and whether there is (Congruent) or is not (Incongruent) a match between what was previously learned and the final target category.

Immediate vs. Awake vs. Asleep

Intervention Type BEHAVIORAL

Immediate, Awake, and Sleep refer to either no break, 2.5 hours awake, or 2 hours asleep plus a 30-minute post-nap break to account for sleep inertia between learning and target category.

Targeted memory reactivation (TMR)

Intervention Type BEHAVIORAL

Targeted memory reactivation (TMR) is the systematic presentation of sounds during sleep that were associated with certain stimuli during learning and will be administered either during slow wave sleep (SWS) or rapid eye movement (REM) sleep.

Sleep Congruent (REM)

Participants will learn two different semantic categories, one of which has a Modular structure. After a 2-hour nap opportunity, during which TMR will be used to reactivate the Modular category during rapid eye movement (REM) sleep, participants will take a 30-minute break. After the break, they will learn and be tested on a novel semantic category with a Modular structure.

Group Type EXPERIMENTAL

Congruent vs. Incongruent

Intervention Type BEHAVIORAL

The Congruent vs. Incongruent intervention relates to the feature-based structure of the novel categories (Modular or non-Modular) and whether there is (Congruent) or is not (Incongruent) a match between what was previously learned and the final target category.

Immediate vs. Awake vs. Asleep

Intervention Type BEHAVIORAL

Immediate, Awake, and Sleep refer to either no break, 2.5 hours awake, or 2 hours asleep plus a 30-minute post-nap break to account for sleep inertia between learning and target category.

Targeted memory reactivation (TMR)

Intervention Type BEHAVIORAL

Targeted memory reactivation (TMR) is the systematic presentation of sounds during sleep that were associated with certain stimuli during learning and will be administered either during slow wave sleep (SWS) or rapid eye movement (REM) sleep.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Congruent vs. Incongruent

The Congruent vs. Incongruent intervention relates to the feature-based structure of the novel categories (Modular or non-Modular) and whether there is (Congruent) or is not (Incongruent) a match between what was previously learned and the final target category.

Intervention Type BEHAVIORAL

Immediate vs. Awake vs. Asleep

Immediate, Awake, and Sleep refer to either no break, 2.5 hours awake, or 2 hours asleep plus a 30-minute post-nap break to account for sleep inertia between learning and target category.

Intervention Type BEHAVIORAL

Targeted memory reactivation (TMR)

Targeted memory reactivation (TMR) is the systematic presentation of sounds during sleep that were associated with certain stimuli during learning and will be administered either during slow wave sleep (SWS) or rapid eye movement (REM) sleep.

Intervention Type BEHAVIORAL

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Ages between 18 and 35

Exclusion Criteria

* No medical or neurological illness that would impact experimental performance
* Not a member of a vulnerable population
Minimum Eligible Age

18 Years

Maximum Eligible Age

35 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

National Institute of Mental Health (NIMH)

NIH

Sponsor Role collaborator

University of Pennsylvania

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Anna C Schapiro, PhD

Role: PRINCIPAL_INVESTIGATOR

University of Pennsylvania

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

University of Pennsylvania

Philadelphia, Pennsylvania, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

References

Explore related publications, articles, or registry entries linked to this study.

Gentner, D.. Structure-mapping: A theoretical framework for analogy. Cognitive science. 1983;7(2): 155-170.

Reference Type BACKGROUND

Thibodeau PH, Flusberg SJ, Glick JJ, & Sternberg DA. An emergent approach to analogical inference. Connection Science. 2013; 25(1): 27-53.

Reference Type BACKGROUND

Collins AGE, Frank MJ. Neural signature of hierarchically structured expectations predicts clustering and transfer of rule sets in reinforcement learning. Cognition. 2016 Jul;152:160-169. doi: 10.1016/j.cognition.2016.04.002. Epub 2016 Apr 12.

Reference Type BACKGROUND
PMID: 27082659 (View on PubMed)

Baram AB, Muller TH, Nili H, Garvert MM, Behrens TEJ. Entorhinal and ventromedial prefrontal cortices abstract and generalize the structure of reinforcement learning problems. Neuron. 2021 Feb 17;109(4):713-723.e7. doi: 10.1016/j.neuron.2020.11.024. Epub 2020 Dec 22.

Reference Type BACKGROUND
PMID: 33357385 (View on PubMed)

TOLMAN EC. Cognitive maps in rats and men. Psychol Rev. 1948 Jul;55(4):189-208. doi: 10.1037/h0061626. No abstract available.

Reference Type BACKGROUND
PMID: 18870876 (View on PubMed)

Behrens TEJ, Muller TH, Whittington JCR, Mark S, Baram AB, Stachenfeld KL, Kurth-Nelson Z. What Is a Cognitive Map? Organizing Knowledge for Flexible Behavior. Neuron. 2018 Oct 24;100(2):490-509. doi: 10.1016/j.neuron.2018.10.002.

Reference Type BACKGROUND
PMID: 30359611 (View on PubMed)

Whittington JCR, Muller TH, Mark S, Chen G, Barry C, Burgess N, Behrens TEJ. The Tolman-Eichenbaum Machine: Unifying Space and Relational Memory through Generalization in the Hippocampal Formation. Cell. 2020 Nov 25;183(5):1249-1263.e23. doi: 10.1016/j.cell.2020.10.024. Epub 2020 Nov 11.

Reference Type BACKGROUND
PMID: 33181068 (View on PubMed)

McClelland JL, Rogers TT. The parallel distributed processing approach to semantic cognition. Nat Rev Neurosci. 2003 Apr;4(4):310-22. doi: 10.1038/nrn1076. No abstract available.

Reference Type BACKGROUND
PMID: 12671647 (View on PubMed)

Solomon SH, Schapiro AC. Structure shapes the representation of a novel category. J Exp Psychol Learn Mem Cogn. 2024 Mar;50(3):458-483. doi: 10.1037/xlm0001257. Epub 2023 Jun 15.

Reference Type BACKGROUND
PMID: 37326540 (View on PubMed)

Bahdanau D, Murty S, Noukhovitch M, Nguyen TH, de Vries H, Courville A. Systematic generalization: what is required and can it be learned?. arXiv preprint. 2018.

Reference Type BACKGROUND

Mark S, Moran R, Parr T, Kennerley SW, Behrens TEJ. Transferring structural knowledge across cognitive maps in humans and models. Nat Commun. 2020 Sep 22;11(1):4783. doi: 10.1038/s41467-020-18254-6.

Reference Type BACKGROUND
PMID: 32963219 (View on PubMed)

Durrant SJ, Cairney SA, Lewis PA. Cross-modal transfer of statistical information benefits from sleep. Cortex. 2016 May;78:85-99. doi: 10.1016/j.cortex.2016.02.011. Epub 2016 Feb 27.

Reference Type BACKGROUND
PMID: 27017231 (View on PubMed)

Tamminen J, Lambon Ralph MA, Lewis PA. Targeted memory reactivation of newly learned words during sleep triggers REM-mediated integration of new memories and existing knowledge. Neurobiol Learn Mem. 2017 Jan;137:77-82. doi: 10.1016/j.nlm.2016.11.012. Epub 2016 Nov 15.

Reference Type BACKGROUND
PMID: 27864086 (View on PubMed)

Wang B, Antony JW, Lurie S, Brooks PP, Paller KA, Norman KA. Targeted Memory Reactivation during Sleep Elicits Neural Signals Related to Learning Content. J Neurosci. 2019 Aug 21;39(34):6728-6736. doi: 10.1523/JNEUROSCI.2798-18.2019. Epub 2019 Jun 24.

Reference Type BACKGROUND
PMID: 31235649 (View on PubMed)

Schapiro AC, Turk-Browne NB, Norman KA, Botvinick MM. Statistical learning of temporal community structure in the hippocampus. Hippocampus. 2016 Jan;26(1):3-8. doi: 10.1002/hipo.22523. Epub 2015 Oct 13.

Reference Type BACKGROUND
PMID: 26332666 (View on PubMed)

Mack ML, Love BC, Preston AR. Building concepts one episode at a time: The hippocampus and concept formation. Neurosci Lett. 2018 Jul 27;680:31-38. doi: 10.1016/j.neulet.2017.07.061. Epub 2017 Aug 8.

Reference Type BACKGROUND
PMID: 28801273 (View on PubMed)

Weickert TW, Goldberg TE, Callicott JH, Chen Q, Apud JA, Das S, Zoltick BJ, Egan MF, Meeter M, Myers C, Gluck MA, Weinberger DR, Mattay VS. Neural correlates of probabilistic category learning in patients with schizophrenia. J Neurosci. 2009 Jan 28;29(4):1244-54. doi: 10.1523/JNEUROSCI.4341-08.2009.

Reference Type BACKGROUND
PMID: 19176832 (View on PubMed)

Monti JM, Monti D. Sleep disturbance in schizophrenia. Int Rev Psychiatry. 2005 Aug;17(4):247-53. doi: 10.1080/09540260500104516.

Reference Type BACKGROUND
PMID: 16194796 (View on PubMed)

Tsuno N, Besset A, Ritchie K. Sleep and depression. J Clin Psychiatry. 2005 Oct;66(10):1254-69. doi: 10.4088/jcp.v66n1008.

Reference Type BACKGROUND
PMID: 16259539 (View on PubMed)

Riemann D, Berger M, Voderholzer U. Sleep and depression--results from psychobiological studies: an overview. Biol Psychol. 2001 Jul-Aug;57(1-3):67-103. doi: 10.1016/s0301-0511(01)00090-4.

Reference Type BACKGROUND
PMID: 11454435 (View on PubMed)

Nutt D, Wilson S, Paterson L. Sleep disorders as core symptoms of depression. Dialogues Clin Neurosci. 2008;10(3):329-36. doi: 10.31887/DCNS.2008.10.3/dnutt.

Reference Type BACKGROUND
PMID: 18979946 (View on PubMed)

Karuza EA, Kahn AE, Bassett DS. Human sensitivity to community structure is robust to topological variation. Complexity. 2019.

Reference Type BACKGROUND

Karuza EA, Kahn AE, Thompson-Schill SL, Bassett DS. Process reveals structure: How a network is traversed mediates expectations about its architecture. Sci Rep. 2017 Oct 6;7(1):12733. doi: 10.1038/s41598-017-12876-5.

Reference Type BACKGROUND
PMID: 28986524 (View on PubMed)

Karuza EA, Thompson-Schill SL, Bassett DS. Local Patterns to Global Architectures: Influences of Network Topology on Human Learning. Trends Cogn Sci. 2016 Aug;20(8):629-640. doi: 10.1016/j.tics.2016.06.003. Epub 2016 Jun 29.

Reference Type BACKGROUND
PMID: 27373349 (View on PubMed)

Lynn CW, Bassett DS. How humans learn and represent networks. Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29407-29415. doi: 10.1073/pnas.1912328117.

Reference Type BACKGROUND
PMID: 33229528 (View on PubMed)

Schapiro AC, Rogers TT, Cordova NI, Turk-Browne NB, Botvinick MM. Neural representations of events arise from temporal community structure. Nat Neurosci. 2013 Apr;16(4):486-92. doi: 10.1038/nn.3331. Epub 2013 Feb 17.

Reference Type BACKGROUND
PMID: 23416451 (View on PubMed)

Kahn AE, Karuza EA, Vettel JM, Bassett DS. Network constraints on learnability of probabilistic motor sequences. Nat Hum Behav. 2018 Dec;2(12):936-947. doi: 10.1038/s41562-018-0463-8. Epub 2018 Nov 5.

Reference Type BACKGROUND
PMID: 30988437 (View on PubMed)

Kakaei E, Aleshin S, Braun J. Visual object recognition is facilitated by temporal community structure. Learn Mem. 2021 Apr 15;28(5):148-152. doi: 10.1101/lm.053306.120. Print 2021 May.

Reference Type BACKGROUND
PMID: 33858967 (View on PubMed)

Eichenbaum H. Time cells in the hippocampus: a new dimension for mapping memories. Nat Rev Neurosci. 2014 Nov;15(11):732-44. doi: 10.1038/nrn3827. Epub 2014 Oct 1.

Reference Type BACKGROUND
PMID: 25269553 (View on PubMed)

Moser MB, Rowland DC, Moser EI. Place cells, grid cells, and memory. Cold Spring Harb Perspect Biol. 2015 Feb 2;7(2):a021808. doi: 10.1101/cshperspect.a021808.

Reference Type BACKGROUND
PMID: 25646382 (View on PubMed)

Maguire EA, Spiers HJ, Good CD, Hartley T, Frackowiak RS, Burgess N. Navigation expertise and the human hippocampus: a structural brain imaging analysis. Hippocampus. 2003;13(2):250-9. doi: 10.1002/hipo.10087.

Reference Type BACKGROUND
PMID: 12699332 (View on PubMed)

Kumaran D, McClelland JL. Generalization through the recurrent interaction of episodic memories: a model of the hippocampal system. Psychol Rev. 2012 Jul;119(3):573-616. doi: 10.1037/a0028681.

Reference Type BACKGROUND
PMID: 22775499 (View on PubMed)

Cohen N., Eichenbaum H. Memory, amnesia, and the hippocampal system. MIT press. 1993.

Reference Type BACKGROUND

Belal S, Cousins J, El-Deredy W, Parkes L, Schneider J, Tsujimura H, Zoumpoulaki A, Perapoch M, Santamaria L, Lewis P. Identification of memory reactivation during sleep by EEG classification. Neuroimage. 2018 Aug 1;176:203-214. doi: 10.1016/j.neuroimage.2018.04.029. Epub 2018 Apr 17.

Reference Type BACKGROUND
PMID: 29678758 (View on PubMed)

Stickgold R. Sleep-dependent memory consolidation. Nature. 2005 Oct 27;437(7063):1272-8. doi: 10.1038/nature04286.

Reference Type BACKGROUND
PMID: 16251952 (View on PubMed)

Rasch B, Born J. About sleep's role in memory. Physiol Rev. 2013 Apr;93(2):681-766. doi: 10.1152/physrev.00032.2012.

Reference Type BACKGROUND
PMID: 23589831 (View on PubMed)

Wagner U, Gais S, Haider H, Verleger R, Born J. Sleep inspires insight. Nature. 2004 Jan 22;427(6972):352-5. doi: 10.1038/nature02223.

Reference Type BACKGROUND
PMID: 14737168 (View on PubMed)

Ellenbogen JM, Hu PT, Payne JD, Titone D, Walker MP. Human relational memory requires time and sleep. Proc Natl Acad Sci U S A. 2007 May 1;104(18):7723-8. doi: 10.1073/pnas.0700094104. Epub 2007 Apr 20.

Reference Type BACKGROUND
PMID: 17449637 (View on PubMed)

Schapiro AC, McDevitt EA, Chen L, Norman KA, Mednick SC, Rogers TT. Sleep Benefits Memory for Semantic Category Structure While Preserving Exemplar-Specific Information. Sci Rep. 2017 Nov 1;7(1):14869. doi: 10.1038/s41598-017-12884-5.

Reference Type BACKGROUND
PMID: 29093451 (View on PubMed)

Lewis PA, Knoblich G, Poe G. How Memory Replay in Sleep Boosts Creative Problem-Solving. Trends Cogn Sci. 2018 Jun;22(6):491-503. doi: 10.1016/j.tics.2018.03.009.

Reference Type BACKGROUND
PMID: 29776467 (View on PubMed)

Feld GB, Bernard M, Rawson AB, Spiers HJ. Sleep targets highly connected global and local nodes to aid consolidation of learned graph networks. Sci Rep. 2022 Sep 5;12(1):15086. doi: 10.1038/s41598-022-17747-2.

Reference Type BACKGROUND
PMID: 36064730 (View on PubMed)

McClelland JL, McNaughton BL, O'Reilly RC. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev. 1995 Jul;102(3):419-457. doi: 10.1037/0033-295X.102.3.419.

Reference Type BACKGROUND
PMID: 7624455 (View on PubMed)

Marshall L, Born J. The contribution of sleep to hippocampus-dependent memory consolidation. Trends Cogn Sci. 2007 Oct;11(10):442-50. doi: 10.1016/j.tics.2007.09.001. Epub 2007 Oct 1.

Reference Type BACKGROUND
PMID: 17905642 (View on PubMed)

Davidson TJ, Kloosterman F, Wilson MA. Hippocampal replay of extended experience. Neuron. 2009 Aug 27;63(4):497-507. doi: 10.1016/j.neuron.2009.07.027.

Reference Type BACKGROUND
PMID: 19709631 (View on PubMed)

Schapiro AC, McDevitt EA, Rogers TT, Mednick SC, Norman KA. Human hippocampal replay during rest prioritizes weakly learned information and predicts memory performance. Nat Commun. 2018 Sep 25;9(1):3920. doi: 10.1038/s41467-018-06213-1.

Reference Type BACKGROUND
PMID: 30254219 (View on PubMed)

Cairney SA, Durrant SJ, Hulleman J, Lewis PA. Targeted memory reactivation during slow wave sleep facilitates emotional memory consolidation. Sleep. 2014 Apr 1;37(4):701-7, 707A. doi: 10.5665/sleep.3572.

Reference Type BACKGROUND
PMID: 24688163 (View on PubMed)

Batterink LJ, Paller KA. Sleep-based memory processing facilitates grammatical generalization: Evidence from targeted memory reactivation. Brain Lang. 2017 Apr;167:83-93. doi: 10.1016/j.bandl.2015.09.003. Epub 2015 Oct 9.

Reference Type BACKGROUND
PMID: 26443322 (View on PubMed)

Goldi M, van Poppel EAM, Rasch B, Schreiner T. Increased neuronal signatures of targeted memory reactivation during slow-wave up states. Sci Rep. 2019 Feb 25;9(1):2715. doi: 10.1038/s41598-019-39178-2.

Reference Type BACKGROUND
PMID: 30804371 (View on PubMed)

Ngo HV, Martinetz T, Born J, Molle M. Auditory closed-loop stimulation of the sleep slow oscillation enhances memory. Neuron. 2013 May 8;78(3):545-53. doi: 10.1016/j.neuron.2013.03.006. Epub 2013 Apr 11.

Reference Type BACKGROUND
PMID: 23583623 (View on PubMed)

Ngo HV, Miedema A, Faude I, Martinetz T, Molle M, Born J. Driving sleep slow oscillations by auditory closed-loop stimulation-a self-limiting process. J Neurosci. 2015 Apr 29;35(17):6630-8. doi: 10.1523/JNEUROSCI.3133-14.2015.

Reference Type BACKGROUND
PMID: 25926443 (View on PubMed)

Navarrete M, Schneider J, Ngo HV, Valderrama M, Casson AJ, Lewis PA. Examining the optimal timing for closed-loop auditory stimulation of slow-wave sleep in young and older adults. Sleep. 2020 Jun 15;43(6):zsz315. doi: 10.1093/sleep/zsz315.

Reference Type BACKGROUND
PMID: 31872860 (View on PubMed)

Solomon SH, Medaglia JD, Thompson-Schill SL. Implementing a concept network model. Behav Res Methods. 2019 Aug;51(4):1717-1736. doi: 10.3758/s13428-019-01217-1.

Reference Type BACKGROUND
PMID: 30891712 (View on PubMed)

Collins AM, Loftus EF. A spreading-activation theory of semantic processing. Psychological review. 1975; 82(6): 407.

Reference Type BACKGROUND

De Deyne S, Navarro DJ, Perfors A, Storms G. Structure at every scale: A semantic network account of the similarities between unrelated concepts. J Exp Psychol Gen. 2016 Sep;145(9):1228-54. doi: 10.1037/xge0000192.

Reference Type BACKGROUND
PMID: 27560855 (View on PubMed)

McRae K, de Sa VR, Seidenberg MS. On the nature and scope of featural representations of word meaning. J Exp Psychol Gen. 1997 Jun;126(2):99-130. doi: 10.1037//0096-3445.126.2.99.

Reference Type BACKGROUND
PMID: 9163932 (View on PubMed)

Tyler LK, Moss HE, Durrant-Peatfield MR, Levy JP. Conceptual structure and the structure of concepts: a distributed account of category-specific deficits. Brain Lang. 2000 Nov;75(2):195-231. doi: 10.1006/brln.2000.2353.

Reference Type BACKGROUND
PMID: 11049666 (View on PubMed)

Saffran JR, Johnson EK, Aslin RN, Newport EL. Statistical learning of tone sequences by human infants and adults. Cognition. 1999 Feb 1;70(1):27-52. doi: 10.1016/s0010-0277(98)00075-4.

Reference Type BACKGROUND
PMID: 10193055 (View on PubMed)

Saffran JR. The use of predictive dependencies in language learning. Journal of Memory and Language. 2001; 44(4): 493-515.

Reference Type BACKGROUND

Fiser J, Aslin RN. Statistical learning of new visual feature combinations by infants. Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15822-6. doi: 10.1073/pnas.232472899. Epub 2002 Nov 12.

Reference Type BACKGROUND
PMID: 12429858 (View on PubMed)

Kirkham NZ, Slemmer JA, Johnson SP. Visual statistical learning in infancy: evidence for a domain general learning mechanism. Cognition. 2002 Mar;83(2):B35-42. doi: 10.1016/s0010-0277(02)00004-5.

Reference Type BACKGROUND
PMID: 11869728 (View on PubMed)

Pearce MT, Ruiz MH, Kapasi S, Wiggins GA, Bhattacharya J. Unsupervised statistical learning underpins computational, behavioural, and neural manifestations of musical expectation. Neuroimage. 2010 Mar;50(1):302-13. doi: 10.1016/j.neuroimage.2009.12.019. Epub 2009 Dec 11.

Reference Type BACKGROUND
PMID: 20005297 (View on PubMed)

Turk-Browne NB, Junge J, Scholl BJ. The automaticity of visual statistical learning. J Exp Psychol Gen. 2005 Nov;134(4):552-64. doi: 10.1037/0096-3445.134.4.552.

Reference Type BACKGROUND
PMID: 16316291 (View on PubMed)

O'Keefe J, Nadel L. The hippocampus as a cognitive map. Oxford university press. 1978.

Reference Type BACKGROUND

Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. Microstructure of a spatial map in the entorhinal cortex. Nature. 2005 Aug 11;436(7052):801-6. doi: 10.1038/nature03721. Epub 2005 Jun 19.

Reference Type BACKGROUND
PMID: 15965463 (View on PubMed)

Javadi AH, Emo B, Howard LR, Zisch FE, Yu Y, Knight R, Pinelo Silva J, Spiers HJ. Hippocampal and prefrontal processing of network topology to simulate the future. Nat Commun. 2017 Mar 21;8:14652. doi: 10.1038/ncomms14652.

Reference Type BACKGROUND
PMID: 28323817 (View on PubMed)

Killian NJ, Buffalo EA. Grid cells map the visual world. Nat Neurosci. 2018 Feb;21(2):161-162. doi: 10.1038/s41593-017-0062-4. No abstract available.

Reference Type BACKGROUND
PMID: 29371658 (View on PubMed)

Stachenfeld KL, Botvinick MM, Gershman SJ. The hippocampus as a predictive map. Nat Neurosci. 2017 Nov;20(11):1643-1653. doi: 10.1038/nn.4650. Epub 2017 Oct 2.

Reference Type BACKGROUND
PMID: 28967910 (View on PubMed)

Epstein RA, Patai EZ, Julian JB, Spiers HJ. The cognitive map in humans: spatial navigation and beyond. Nat Neurosci. 2017 Oct 26;20(11):1504-1513. doi: 10.1038/nn.4656.

Reference Type BACKGROUND
PMID: 29073650 (View on PubMed)

Erickson JE, Chin-Parker S, Ross BH. Inference and classification learning of abstract coherent categories. J Exp Psychol Learn Mem Cogn. 2005 Jan;31(1):86-99. doi: 10.1037/0278-7393.31.1.86.

Reference Type BACKGROUND
PMID: 15641907 (View on PubMed)

Park SA, Miller DS, Boorman ED. Inferences on a multidimensional social hierarchy use a grid-like code. Nat Neurosci. 2021 Sep;24(9):1292-1301. doi: 10.1038/s41593-021-00916-3. Epub 2021 Aug 31.

Reference Type BACKGROUND
PMID: 34465915 (View on PubMed)

Tavares RM, Mendelsohn A, Grossman Y, Williams CH, Shapiro M, Trope Y, Schiller D. A Map for Social Navigation in the Human Brain. Neuron. 2015 Jul 1;87(1):231-43. doi: 10.1016/j.neuron.2015.06.011.

Reference Type BACKGROUND
PMID: 26139376 (View on PubMed)

Constantinescu AO, O'Reilly JX, Behrens TEJ. Organizing conceptual knowledge in humans with a gridlike code. Science. 2016 Jun 17;352(6292):1464-1468. doi: 10.1126/science.aaf0941. Epub 2016 Jun 16.

Reference Type BACKGROUND
PMID: 27313047 (View on PubMed)

Hassabis D, Kumaran D, Vann SD, Maguire EA. Patients with hippocampal amnesia cannot imagine new experiences. Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1726-31. doi: 10.1073/pnas.0610561104. Epub 2007 Jan 17.

Reference Type BACKGROUND
PMID: 17229836 (View on PubMed)

Franklin NT, Frank MJ. Compositional clustering in task structure learning. PLoS Comput Biol. 2018 Apr 19;14(4):e1006116. doi: 10.1371/journal.pcbi.1006116. eCollection 2018 Apr.

Reference Type BACKGROUND
PMID: 29672581 (View on PubMed)

Schuck NW, Cai MB, Wilson RC, Niv Y. Human Orbitofrontal Cortex Represents a Cognitive Map of State Space. Neuron. 2016 Sep 21;91(6):1402-1412. doi: 10.1016/j.neuron.2016.08.019.

Reference Type BACKGROUND
PMID: 27657452 (View on PubMed)

Theves S, Fernandez G, Doeller CF. The Hippocampus Encodes Distances in Multidimensional Feature Space. Curr Biol. 2019 Apr 1;29(7):1226-1231.e3. doi: 10.1016/j.cub.2019.02.035. Epub 2019 Mar 21.

Reference Type BACKGROUND
PMID: 30905602 (View on PubMed)

Hu X, Cheng LY, Chiu MH, Paller KA. Promoting memory consolidation during sleep: A meta-analysis of targeted memory reactivation. Psychol Bull. 2020 Mar;146(3):218-244. doi: 10.1037/bul0000223.

Reference Type BACKGROUND
PMID: 32027149 (View on PubMed)

Yamauchi T, Markman AB. Category learning by inference and classification. Journal of Memory and language. 1998; 39(1): 124-148.

Reference Type BACKGROUND

Anderson AL, Ross BH, Chin-Parker S. A further investigation of category learning by inference. Mem Cognit. 2002 Jan;30(1):119-28. doi: 10.3758/bf03195271.

Reference Type BACKGROUND
PMID: 11958345 (View on PubMed)

Chin-Parker S, Ross BH. The effect of category learning on sensitivity to within-category correlations. Mem Cognit. 2002 Apr;30(3):353-62. doi: 10.3758/bf03194936.

Reference Type BACKGROUND
PMID: 12061756 (View on PubMed)

Chin-Parker S, Ross BH. Diagnosticity and prototypicality in category learning: a comparison of inference learning and classification learning. J Exp Psychol Learn Mem Cogn. 2004 Jan;30(1):216-26. doi: 10.1037/0278-7393.30.1.216.

Reference Type BACKGROUND
PMID: 14736308 (View on PubMed)

Markman AB, Ross BH. Category use and category learning. Psychol Bull. 2003 Jul;129(4):592-613. doi: 10.1037/0033-2909.129.4.592.

Reference Type BACKGROUND
PMID: 12848222 (View on PubMed)

Cousins JN, El-Deredy W, Parkes LM, Hennies N, Lewis PA. Cued Reactivation of Motor Learning during Sleep Leads to Overnight Changes in Functional Brain Activity and Connectivity. PLoS Biol. 2016 May 3;14(5):e1002451. doi: 10.1371/journal.pbio.1002451. eCollection 2016 May.

Reference Type BACKGROUND
PMID: 27137944 (View on PubMed)

Cairney SA, Guttesen AAV, El Marj N, Staresina BP. Memory Consolidation Is Linked to Spindle-Mediated Information Processing during Sleep. Curr Biol. 2018 Mar 19;28(6):948-954.e4. doi: 10.1016/j.cub.2018.01.087. Epub 2018 Mar 8.

Reference Type BACKGROUND
PMID: 29526594 (View on PubMed)

Provided Documents

Download supplemental materials such as informed consent forms, study protocols, or participant manuals.

Document Type: Study Protocol

View Document

Document Type: Statistical Analysis Plan

View Document

Document Type: Informed Consent Form

View Document

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

1R21MH128788-01A1

Identifier Type: NIH

Identifier Source: secondary_id

View Link

833228A

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Sleep and Memory in Children
NCT02785328 COMPLETED NA
Chronic Sleep Restriction
NCT01493661 COMPLETED