Factors in Learning And Plasticity: Healthy Vision

NCT ID: NCT05439759

Last Updated: 2026-02-09

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

ACTIVE_NOT_RECRUITING

Clinical Phase

NA

Total Enrollment

120 participants

Study Classification

INTERVENTIONAL

Study Start Date

2022-10-24

Study Completion Date

2026-11-30

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

A greater understanding of plasticity after central vision loss can inform new therapies for treating low vision and has the potential to benefit millions of individuals suffering from low vision. The treatment of low vision is particularly relevant to the mission of the National Eye Institute (NEI) to support research on visual disorders, mechanisms of visual function, and preservation of sight. The comparison of different training and outcome factors is in line with the National Institute of Mental Health (NIMH) Research Domain Criteria (RDOC) framework and studies in an aging population are consistent with the mission of the National Institute on Aging (NIA).

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Research on perceptual learning (PL) has been dominated by studies that seek to isolate and improve individual visual processes. However, an important translational outcome of PL research is to address the needs of patients with vision loss, who seek to improve performance on daily tasks such as reading, navigation, and face recognition. These more ecological cases of behavioral change and cortical plasticity, which are inherently complex and integrative, have revealed significant gaps in a more holistic understanding of how multiple visual processes and their associated brain systems jointly contribute to durable and generalizable PL. To address these gaps, here the investigators study simulated and natural central vision loss. The investigators focus on macular degeneration (MD), one of the most common causes of vision loss (projected to affect 248 million people worldwide by 2040), which results from damage to photoreceptors in the macula that disrupts central vision. Such central vision loss is a superb lens through which study to how ecologically relevant changes in the use of vision relate to changing brain activity and connectivity because it represents a massive alteration in visual experience requiring reliance on peripheral vision for daily tasks. With the use of eye-trackers and gaze-contingent displays that induce central scotomas, central vision loss can be simulated in normally seeing individuals, who then develop peripheral looking patterns that resemble compensatory vision strategies seen in MD patients. Ideal use of peripheral vision requires improvement in multiple vision domains, three of the most important being: early visual processing (e.g., visual sensitivity), mid-level visual processing (e.g., spatial integration), and attention and eye-movements. To date, no study has systematically investigated these three domains of PL and their neural underpinnings. The proposed research plan rests on rigorous prior work showing that PL influences multiple brain structures and functions related to these three domains. The investigators propose a novel approach of systematically measuring how different training regimes related to the three domains influence a broad range of psychophysical and ecological behaviors (Aim 1), how these changes arise from plasticity in brain structure and function (Aim 2), and how PL after simulated central vision loss compares to PL in MD (Aim 3). This work is significant and innovative as it will be the first integrated study of PL characterizing multiple trainable factors and their impact on diverse behavioral outcomes and on cutting-edge assessments of neural representations and dynamics. It is also the first study to directly compare PL in MD patients with PL in a controlled model system of central visual field loss with simulated scotomas, which if validated will allow the use of this model system to interrogate MD in larger samples of healthy individuals. The Investigators will also share a unique dataset that will help the field to understand behavioral and neural plasticity after central vision loss and individual differences in responsiveness to training. Finally, this work will illuminate basic mechanisms of brain plasticity after sensory loss that may generalize to other forms of rehabilitation after peripheral or central damage.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Central Visual Impairment Macular Degeneration

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

BASIC_SCIENCE

Blinding Strategy

SINGLE

Outcome Assessors

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Condition 1: Training visual sensitivity

A standard Perceptual Learning approach to train early visual processes of discriminating the orientation of Gabor patches presented at threshold- level contrast. Preliminary data, using this method, in normally seeing and MD participants show both feasibility and preliminary evidence that this training gives rise to improvements in acuity.

Group Type EXPERIMENTAL

Condition 1: Training visual sensitivity

Intervention Type BEHAVIORAL

Investigators adopt a standard PL approach to train early visual processes of discriminating the orientation of Gabor patches presented at threshold contrast. Across training blocks, Gabors will range in spatial frequency, where contrast is adapted with a 3/1 staircase. Whenever a specific contrast threshold is reached, spatial frequency will increase by 2 cycles per degree and contrast will be reset. Preliminary data from this method in normally seeing and MD participants show both feasibility and tentative evidence that this training gives rise to improvements in acuity.

Condition 2: Training spatial integration

Most visual tasks involve integrating features to discriminate objects, therefore requiring brain areas that can integrate features from multiple receptive fields from early visual areas. Thus spatial integration involves what investigators refer to as mid-level vision. Spatial integration is a particular concern in developing a PRL since an area of the visual periphery that is best suited to discriminate a simple visual feature may not be appropriate to integrate information across objects, such as in reading or recognizing facial identity or expression. Investigators address this issue with a targeted spatial integration training approach developed by MPI Seitz and based on contour integration tasks used in previous PL studies to train mid-level visual processes. Target stimuli consist of contours formed by spaced Gabors. Difficulty of detecting the target is manipulated by varying orientation jitter of Gabors making up the target.

Group Type EXPERIMENTAL

Condition 2: Training spatial integration

Intervention Type BEHAVIORAL

Spatial integration involves what the investigators refer to as mid-level vision. Spatial integration is a concern in developing a PRL since an area of the visual periphery that is best suited to discriminate a simple visual feature may not be appropriate to integrate information across objects, such as in reading or recognizing facial identity or expression. The investigators address this issue with a targeted spatial integration training approach developed by MPI Seitz and based on contour integration tasks used in previous PL studies to train mid-level visual processes. Target stimuli consist of contours formed by spaced Gabors. The difficulty is manipulated by varying orientation jitter of Gabors. Several optotypes will be included to promote generalization, including shapes and facial expressions.

Condition 3: Training spatial attention

A key attribute of most real-world visual tasks is that individuals alternate shifting and holding attention and eye movements to different objects in the visual field while searching for and discriminating possible sources of visual information. To train this, investigators will implement a task structure that requires participants to alternate between holding and switching attention and making targeted eye movements. The basic task is to press a key whenever a red circle appears in a series of other colored circles, with a target presented every 2 to 4s. Participants must maintain vigilance for relatively long periods, detect objects in the near periphery, switch attention based upon exogenous and endogenous cues, and make eye- movements to move areas of spared vision to those locations. These are aspects of attention and eye movements not incorporated in Conditions 1 and 2.

Group Type EXPERIMENTAL

Condition 3: Training spatial attention

Intervention Type BEHAVIORAL

The investigators will implement a task structure that requires participants to alternate between holding and switching attention and making targeted eye movements. The basic task is to press a key whenever a red-circle appears in a series of other colored-circles, with a target presented every 2 to 4s. Participants must maintain vigilance for relatively long periods, detect objects in the near periphery, switch attention based upon exogenous and endogenous cues, and make eye- movements to move areas of spared vision to those locations. These are aspects of attention and eye movements not incorporated in Conditions 1 and 2.

Condition 4: Combination training

In Condition 4, investigators combine the elements of Conditions 1-3. The investigators test the extent to which a combined training gives rise to the joint benefits of each training individually, or integrative benefits potentially surpass the benefits of the individual training alone. The visual sensitivity task from Condition 1 will alternate across blocks with the spatial integration task from Condition 2, using the timing of targets and location switches from Condition 3; Gabors or contours are used as targets instead of the red- circle in Condition 3 and a fixation point is presented instead of distractors to maintain a similar stimulus configuration as Conditions 1 and 2.

Group Type EXPERIMENTAL

Condition 4: Combination training

Intervention Type BEHAVIORAL

Daily tasks involve a combination of being sensitive to basic visual features, being able to integrate these features, and directing attention and eye movements to better evaluate the information of potential interest. To address this integrative nature of real-world vision,Condition 4 combines the elements of Conditions 1-3.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Condition 1: Training visual sensitivity

Investigators adopt a standard PL approach to train early visual processes of discriminating the orientation of Gabor patches presented at threshold contrast. Across training blocks, Gabors will range in spatial frequency, where contrast is adapted with a 3/1 staircase. Whenever a specific contrast threshold is reached, spatial frequency will increase by 2 cycles per degree and contrast will be reset. Preliminary data from this method in normally seeing and MD participants show both feasibility and tentative evidence that this training gives rise to improvements in acuity.

Intervention Type BEHAVIORAL

Condition 2: Training spatial integration

Spatial integration involves what the investigators refer to as mid-level vision. Spatial integration is a concern in developing a PRL since an area of the visual periphery that is best suited to discriminate a simple visual feature may not be appropriate to integrate information across objects, such as in reading or recognizing facial identity or expression. The investigators address this issue with a targeted spatial integration training approach developed by MPI Seitz and based on contour integration tasks used in previous PL studies to train mid-level visual processes. Target stimuli consist of contours formed by spaced Gabors. The difficulty is manipulated by varying orientation jitter of Gabors. Several optotypes will be included to promote generalization, including shapes and facial expressions.

Intervention Type BEHAVIORAL

Condition 3: Training spatial attention

The investigators will implement a task structure that requires participants to alternate between holding and switching attention and making targeted eye movements. The basic task is to press a key whenever a red-circle appears in a series of other colored-circles, with a target presented every 2 to 4s. Participants must maintain vigilance for relatively long periods, detect objects in the near periphery, switch attention based upon exogenous and endogenous cues, and make eye- movements to move areas of spared vision to those locations. These are aspects of attention and eye movements not incorporated in Conditions 1 and 2.

Intervention Type BEHAVIORAL

Condition 4: Combination training

Daily tasks involve a combination of being sensitive to basic visual features, being able to integrate these features, and directing attention and eye movements to better evaluate the information of potential interest. To address this integrative nature of real-world vision,Condition 4 combines the elements of Conditions 1-3.

Intervention Type BEHAVIORAL

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Aged 18-30
* Corrected vision (20/40 or better)
* No reported incidence of retinal pathology.

Exclusion Criteria

* Pacemaker or any ferromagnetic metal implanted in their body
* Metal of any type implanted in their head (limited dental work is acceptable)
* Claustrophobia
* Needing non-standard glasses (other than the simple MR-compatible glasses that can be supplied) for best-corrected distance vision
* Being hearing-impaired
* Weight over 300 pounds
* Maximum body girth over 60 inches
* Previous serious head injury
* Presence of hallucinations or delusions
* Excessive old, or colorful tattoos, especially near the head
* Pregnancy
* Braces/permanent retainer
Minimum Eligible Age

18 Years

Maximum Eligible Age

30 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

University of California, Riverside

OTHER

Sponsor Role collaborator

University of Alabama at Birmingham

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Kristina M Visscher

Associate Professor

Responsibility Role PRINCIPAL_INVESTIGATOR

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

UAB

Birmingham, Alabama, United States

Site Status

University of California, Riverside

Riverside, California, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

300006197 (Study 1)

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Mechanisms of Perceptual Learning
NCT06822101 ENROLLING_BY_INVITATION NA
Functional Vision in TBI
NCT01214070 TERMINATED PHASE4
Visual Rehabilitation After Occipital Stroke
NCT04798924 ACTIVE_NOT_RECRUITING NA
Visual Attention and Eye Movements
NCT03298737 ENROLLING_BY_INVITATION