Computational Decision Support in Epilepsy Using Retrospective EEG

NCT ID: NCT05384782

Last Updated: 2022-05-20

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Total Enrollment

825 participants

Study Classification

OBSERVATIONAL

Study Start Date

2019-12-01

Study Completion Date

2022-03-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The primary aim is to validate a set of computational biomarkers as potential decision support in epilepsy on a large cohort of study participants that were diagnosed with epilepsy and controls that ended up with another diagnosis (such as syncope or non-epileptic seizures). The goal is to examine if the methodology works robustly on this large cohort, and can theoretically contribute to the reduction of misdiagnosis rates.

The secondary aim is to examine whether the computational biomarkers could contribute to reducing the waiting time and the number of clinical appointments needed before a final diagnosis is made.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Mathematical models provide a powerful and useful tool with which to identify and understand biological mechanisms that may lead to the risk of having seizures as well as how they generate, propagate and terminate (Wendling, 2005). Mathematical models that combine experimental and clinical detail at diverse scales have revealed the importance of many microscopic and macroscopic mechanisms in the generation of seizure-like activity, ranging from genetic and molecular mechanisms to changes in the excitability of neural populations leading to the generation of pathological oscillations (for review see Woldman \& Terry (2015); Soltesz \& Staley (2008)). Due to the increased availability of data recordings (EEG, MRI, MEG, CT, PET), there has been a significant increase in research studies that aim to identify novel biomarkers from these recordings with potential clinical value, using various different techniques (e.g. time-series analysis, computational modelling, machine learning).

By combining mathematical and computational techniques, we have identified properties in the resting-state EEG (eyes closed, relaxed) of people with epilepsy that differ from those of controls as well as their first-degree relatives (Chowdhury et al., 2014). Developing these approaches and applying them to routine recordings from individuals with epilepsy against a control cohort (Schmidt et al., 2016) revealed levels of diagnostic accuracy similar to current general (i.e. non-specialist) neurology practices (60% sensitivity, 87% specificity, N=68). Crucially, our method correctly classified several subjects using their first EEG, whereas clinical diagnosis was confirmed only after prolonged telemetric recordings over many months.

Since our methods and analysis depend on short segments of resting-state EEG only, its accuracy and efficacy do not rely on capturing epileptiform abnormalities, in contrast to the current use of EEG in diagnosing epilepsy. Since many EEGs return negative, clinicians are often faced with the problem of deciding on whether to opt for longer recordings of EEG or ambulatory or video EEG, which is currently the final method in the diagnostic cascade. This is time-consuming, expensive and relies on the availability and expertise of trained EEG-readers. By optimally interrogating short segments of background activity with mathematical and computational analysis, our methods, in the short term, provide additional evidence that could guide clinicians in future diagnostic steps.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Epilepsy

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

RETROSPECTIVE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

Subject was suspected of having had a seizure or epilepsy (fits, faints or funny turns), and as part of the diagnostic process one or more EEGs was recorded The subject ended up with a confirmed diagnosis of epilepsy or of the differential diagnosis such as syncope, or psychogenic seizures (diagnosis must have been at least 1 year ago, and not changed since)

For each subject identified we would like to have all the available EEG files within the centre, with the following metadata:

Primary meta-data (crucial):

Age at the subject at time of each available EEG Treatment status at the time of each available EEG (including drug-load) Gender of the individual Ethnicity of the individual Confirmed diagnosis: details on the exact diagnosis made (syndrome and or condition)

Secondary meta-data (optional):

Aim of each available EEG at the time Information on whether any other conditions are present such as Alzheimer's disease, schizophrenia, Intellectual Disability If available: information on when the diagnosis was made If available: interpretation of each available EEG

Specifics for the EEG recordings:

Montage (10-20 preferred) Number of channels (minimum 19 channels) Referencing method (common average preferred) Format of the file (EDF preferred) Consistent channel labels for all EEGs provided from each centre Information concerning the time of day during the recording Information on the sampling frequency Faulty channels (not more than 2 preferred, all should be indicated though) Pre-processing details (information as to whether any filters were used, for example)
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Neuronostics Ltd

INDUSTRY

Sponsor Role collaborator

Cornwall Partnership NHS Foundation Trust

NETWORK

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Cornwall Partnership NHS Foundation Trust

Bodmin, Cornwall, United Kingdom

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United Kingdom

Provided Documents

Download supplemental materials such as informed consent forms, study protocols, or participant manuals.

Document Type: Study Protocol

View Document

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

260729

Identifier Type: OTHER

Identifier Source: secondary_id

Version 10

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Localizing Epileptic Networks Using MRI and iEEG
NCT04649008 RECRUITING EARLY_PHASE1
Human Intracranial Electrophysiology
NCT05529264 RECRUITING NA
Brain Activity in Epilepsy
NCT05307146 RECRUITING NA