NEED: Neuromed Epilepsy EEG Database. A Large EEG Database of Epilepsy Patients for Research Community.
NCT ID: NCT04647825
Last Updated: 2022-04-08
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
200 participants
OBSERVATIONAL
2021-04-01
2023-01-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Monitoring Patients With Uncontrolled Epilepsy
NCT00001149
Neural Basis of Cognition
NCT05132543
Multi-level Approach of Brain Activity Using Intracranial Electrodes in Epileptic Patients
NCT04653012
Computational Decision Support in Epilepsy Using Retrospective EEG
NCT05384782
Objective EEG Bed Side Assessment of Impaired Conscious Awareness in Epilepsy
NCT04799795
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
* Demographic data (gender and age);
* Clinical information (epilepsy type, seizure frequency,…);
* Neuropsychological data;
* EEG data acquired according to international 10-20 system;
* ECG data;
* Information about the recordings and the seizures (start and end time, start and end time of each seizure, …)
All data from all the patients will be included in a single database, and each patient will be stored in a single compressed archive. The database will be made available after the completation of a request which can be forwarded by each researcher using a dedicated URL, in which the researcher will fill in a form when it will be asked to provide the following data:
* Information about the applicant (name, address, affiliation, …)
* GDPR consent Once the request will be received, the compressed archive containing the whole database will be protected with an ad-hoc alphanumeric password. Such password will consist of two parts: the first part will be sent by email to the applicant, the second part will be sent using the regular mail service (two-way authentication).
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Collection of data from non-invasive epilepsy monitoring
Creation of a large long-term EEG database for seizure detection/prediction
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Patients with at least one recorded seizure during the EEG monitoring
Exclusion Criteria
* Patients with no recorded seizure during the EEG monitoring
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Neuromed IRCCS
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Luigi Pavone
PhD
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Irccs Neuromed
Pozzilli, IS, Italy
Countries
Review the countries where the study has at least one active or historical site.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Stacey WC, Litt B. Technology insight: neuroengineering and epilepsy-designing devices for seizure control. Nat Clin Pract Neurol. 2008 Apr;4(4):190-201. doi: 10.1038/ncpneuro0750. Epub 2008 Feb 26.
Stein AG, Eder HG, Blum DE, Drachev A, Fisher RS. An automated drug delivery system for focal epilepsy. Epilepsy Res. 2000 Apr;39(2):103-14. doi: 10.1016/s0920-1211(99)00107-2.
Theodore WH, Fisher R. Brain stimulation for epilepsy. Acta Neurochir Suppl. 2007;97(Pt 2):261-72. doi: 10.1007/978-3-211-33081-4_29.
Osorio I, Frei MG, Sunderam S, Giftakis J, Bhavaraju NC, Schaffner SF, Wilkinson SB. Automated seizure abatement in humans using electrical stimulation. Ann Neurol. 2005 Feb;57(2):258-68. doi: 10.1002/ana.20377.
Morrell M. Brain stimulation for epilepsy: can scheduled or responsive neurostimulation stop seizures? Curr Opin Neurol. 2006 Apr;19(2):164-8. doi: 10.1097/01.wco.0000218233.60217.84.
Sunderam S, Gluckman B, Reato D, Bikson M. Toward rational design of electrical stimulation strategies for epilepsy control. Epilepsy Behav. 2010 Jan;17(1):6-22. doi: 10.1016/j.yebeh.2009.10.017. Epub 2009 Nov 17.
Mormann F, Andrzejak RG, Elger CE, Lehnertz K. Seizure prediction: the long and winding road. Brain. 2007 Feb;130(Pt 2):314-33. doi: 10.1093/brain/awl241. Epub 2006 Sep 28.
Rogowski Z, Gath I, Bental E. On the prediction of epileptic seizures. Biol Cybern. 1981;42(1):9-15. doi: 10.1007/BF00335153.
Salant Y, Gath I, Henriksen O. Prediction of epileptic seizures from two-channel EEG. Med Biol Eng Comput. 1998 Sep;36(5):549-56. doi: 10.1007/BF02524422.
Iasemidis LD, Sackellares JC, Zaveri HP, Williams WJ. Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures. Brain Topogr. 1990 Spring;2(3):187-201. doi: 10.1007/BF01140588.
Lehnertz K, Elger CE. Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss. Electroencephalogr Clin Neurophysiol. 1995 Aug;95(2):108-17. doi: 10.1016/0013-4694(95)00071-6.
Martinerie J, Adam C, Le Van Quyen M, Baulac M, Clemenceau S, Renault B, Varela FJ. Epileptic seizures can be anticipated by non-linear analysis. Nat Med. 1998 Oct;4(10):1173-6. doi: 10.1038/2667.
Le Van Quyen M, Soss J, Navarro V, Robertson R, Chavez M, Baulac M, Martinerie J. Preictal state identification by synchronization changes in long-term intracranial EEG recordings. Clin Neurophysiol. 2005 Mar;116(3):559-68. doi: 10.1016/j.clinph.2004.10.014. Epub 2004 Dec 25.
Le Van Quyen M, Martinerie J, Baulac M, Varela F. Anticipating epileptic seizures in real time by a non-linear analysis of similarity between EEG recordings. Neuroreport. 1999 Jul 13;10(10):2149-55. doi: 10.1097/00001756-199907130-00028.
Stacey W, Le Van Quyen M, Mormann F, Schulze-Bonhage A. What is the present-day EEG evidence for a preictal state? Epilepsy Res. 2011 Dec;97(3):243-51. doi: 10.1016/j.eplepsyres.2011.07.012. Epub 2011 Aug 31.
Teixeira CA, Direito B, Feldwisch-Drentrup H, Valderrama M, Costa RP, Alvarado-Rojas C, Nikolopoulos S, Le Van Quyen M, Timmer J, Schelter B, Dourado A. EPILAB: a software package for studies on the prediction of epileptic seizures. J Neurosci Methods. 2011 Sep 15;200(2):257-71. doi: 10.1016/j.jneumeth.2011.07.002. Epub 2011 Jul 7.
Delamont RS, Julu PO, Jamal GA. Changes in a measure of cardiac vagal activity before and after epileptic seizures. Epilepsy Res. 1999 Jun;35(2):87-94. doi: 10.1016/s0920-1211(98)00100-4.
Kerem DH, Geva AB. Forecasting epilepsy from the heart rate signal. Med Biol Eng Comput. 2005 Mar;43(2):230-9. doi: 10.1007/BF02345960.
D'Alessandro M, Vachtsevanos G, Esteller R, Echauz J, Cranstoun S, Worrell G, Parish L, Litt B. A multi-feature and multi-channel univariate selection process for seizure prediction. Clin Neurophysiol. 2005 Mar;116(3):506-16. doi: 10.1016/j.clinph.2004.11.014. Epub 2005 Jan 24.
Related Links
Access external resources that provide additional context or updates about the study.
World Health Organization - Epilepsy
Boston database
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
BIOING_02
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.