Effect of Fixed vs. Tailored Intensity tDCS for Attention Deficit After TBI
NCT ID: NCT05302362
Last Updated: 2024-04-17
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
12 participants
INTERVENTIONAL
2022-03-14
2023-08-18
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
The Effects of Transcranial Direct Current Stimulation (tDCS) and Cognitive Training in Patients With TBI
NCT04540783
Relationship Between Attention and Emotional Regulation Post-Traumatic Brain Injury (TBI)
NCT01681589
Transcranial Direct Current Stimulation for the Treatment of Deficits After Traumatic Brain Injury
NCT02613936
Effects of tDCS for Enhancing Cognitive Function in Individuals With Persistent Post-Concussion Syndrome
NCT06376500
TDCS for the Treatment of Inattention Symptoms in Adult ADHD Patients
NCT04003740
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Recently, advances in neurocritical care have led to an increase in the number of severe TBI patients recovering cognitive and physical function, eventually returning to independent life.
With the rising recovery rate of TBI patients, the number of complications of TBI is also rising. One of the most common sequalae of TBI is cognitive deficit. In 2004, Whiteneck et al reported that about 65% of patients who experienced moderate to severe TBI suffer from long-term cognitive deficit. Mild TBI patients show fewer and lighter symptoms of cognitive deficit. However, about 15% of patients suffer from persisting cognitive, emotional, behavioral, and physical disabilities after one year (Roe et al. Disabil Rehabil. 2009).
Common symptoms of post-TBI cognitive deficit are attention deficit, memory loss, and impaired cognitive proceessing (Salmond et al. Curr Opin Crit Care. 2005). Current treatment strategy of post-TBI cognitive rehabilitation constitute multimodal approach including "conventional" occupational therapy, computerized neurocognitive training (CNT), pharmacotherapy, and physical medicine.
Transcranial direct current stimulation (tDCS) is a treatment approach where direct current is applied transcranially, aiming to modulate local neuronal excitability. Previous researches have established that repeated tDCS is safe, cost-effective, and easily administered to various neurological disorders including TBI, stroke, Parkinsonism, Alzheimer's dementia, and multiple sclerosis.
Although cognitive improvements are reported, a standardized protocol of tDCS for TBI patients is yet to be established (Kang, J Korean Neurol Assoc. 2017). The repertoire of researches that studies the efficacy of tDCS on post-TBI cognitive deficits is limited, and further study is warranted to establish standardized protocol (Ulam et al. Clinical Neurophysiology 2015; Kang et al. Journal of Rehabilitation Medicine 2012; Sacco et al. Front. Behav. Neurosci. 2016; Lesiank et al. J Head Trauma Rehabil. 2014; Rushby et al. Neuropsych Rehabil 2020; Motes et al J. Neurotrauma 2020).
This trial aims to determine 1) the efficacy of tDCS on post-TBI cognitive deficits, and 2) and optimized protocol of tDCS on post-TBI cognitive deficits via a three-arm double-blind, randomized controlled trial. The hypotheses of this experiment are as follow:
1. Sham group and actual stimulation group will show significantly different aCPT response time after 10 tDCS sessions.
2. Within the actual stimulation group, tailored tDCS subgroup will show significantly better aCPT response time than conventional tDCS subgroup after 10 tDCS sessions.
3. Patients with EEG biomarker change will show significantly better aCPT response time than those without.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
QUADRUPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Sham tDCS Group
Sham transcranial direct current stimulation using YMS-201B(YBrain, Daejeon, Korea); ramp-up 30sec to 1.5mA, 0mA stimulation for 19 min 30 sec.
transcranial direct current stimulation
Transcranial direct current stimulation using YMS-201B(YBrain, Daejeon, Korea)
Conventional tDCS Group
Transcranial direct current stimulation using YMS-201B(YBrain, Daejeon, Korea); ramp-up 30sec to 1.5mA, continuous 1.5mA stimulation for 19 minutes, ramp-down 30sec to 0mA.
transcranial direct current stimulation
Transcranial direct current stimulation using YMS-201B(YBrain, Daejeon, Korea)
Tailored tDCS Group
Transcranial direct current stimulation using YMS-201B(YBrain, Daejeon, Korea); ramp-up 30sec to 2.0mA, continuous 2.0mA stimulation for 19 minutes, ramp-down 30sec to 0mA.
transcranial direct current stimulation
Transcranial direct current stimulation using YMS-201B(YBrain, Daejeon, Korea)
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
transcranial direct current stimulation
Transcranial direct current stimulation using YMS-201B(YBrain, Daejeon, Korea)
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* At least 6 months since traumatic brain injury
* Cognitive disability measured by:
A) K-MoCA score 25 or below, or B) Trail making test A \> 50.25s or B \> 142.53s
Exclusion Criteria
* history of seizure
* Language disorder
* Serious cognitive deficit with K-MoCA score below 10
* Pregnancy or possibility of pregnancy
* MRI contraindications
* Previous medical history that may affect the patient's cognitive abilities (i.e. previous stroke, hypoxic ischemic encephalopathy, schizophrenia)
* Change in dosage of the following medications within the previous 2 weeks
* rivastigmine
* donepezil
* memantine
* antiepiletic medications
19 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
National Rehabilitation Center, Seoul, Korea
OTHER_GOV
Seoul National University Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Byung-Mo Oh, MD, PhD
Role: PRINCIPAL_INVESTIGATOR
Seoul National University Hospital
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Seoul National University Hospital
Seoul, , South Korea
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil. 2006 Sep-Oct;21(5):375-8. doi: 10.1097/00001199-200609000-00001.
Kim HK, Leigh JH, Lee YS, Choi Y, Kim Y, Kim JE, Cho WS, Seo HG, Oh BM. Decreasing Incidence and Mortality in Traumatic Brain Injury in Korea, 2008-2017: A Population-Based Longitudinal Study. Int J Environ Res Public Health. 2020 Aug 26;17(17):6197. doi: 10.3390/ijerph17176197.
Whiteneck GG, Gerhart KA, Cusick CP. Identifying environmental factors that influence the outcomes of people with traumatic brain injury. J Head Trauma Rehabil. 2004 May-Jun;19(3):191-204. doi: 10.1097/00001199-200405000-00001.
Roe C, Sveen U, Alvsaker K, Bautz-Holter E. Post-concussion symptoms after mild traumatic brain injury: influence of demographic factors and injury severity in a 1-year cohort study. Disabil Rehabil. 2009;31(15):1235-43. doi: 10.1080/09638280802532720.
Salmond CH, Sahakian BJ. Cognitive outcome in traumatic brain injury survivors. Curr Opin Crit Care. 2005 Apr;11(2):111-6. doi: 10.1097/01.ccx.0000155358.31983.37.
Ferrucci R, Mameli F, Guidi I, Mrakic-Sposta S, Vergari M, Marceglia S, Cogiamanian F, Barbieri S, Scarpini E, Priori A. Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology. 2008 Aug 12;71(7):493-8. doi: 10.1212/01.wnl.0000317060.43722.a3. Epub 2008 Jun 4.
Cicerone KD, Goldin Y, Ganci K, Rosenbaum A, Wethe JV, Langenbahn DM, Malec JF, Bergquist TF, Kingsley K, Nagele D, Trexler L, Fraas M, Bogdanova Y, Harley JP. Evidence-Based Cognitive Rehabilitation: Systematic Review of the Literature From 2009 Through 2014. Arch Phys Med Rehabil. 2019 Aug;100(8):1515-1533. doi: 10.1016/j.apmr.2019.02.011. Epub 2019 Mar 26.
Boggio PS, Khoury LP, Martins DC, Martins OE, de Macedo EC, Fregni F. Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease. J Neurol Neurosurg Psychiatry. 2009 Apr;80(4):444-7. doi: 10.1136/jnnp.2007.141853. Epub 2008 Oct 31.
Boggio PS, Ferrucci R, Mameli F, Martins D, Martins O, Vergari M, Tadini L, Scarpini E, Fregni F, Priori A. Prolonged visual memory enhancement after direct current stimulation in Alzheimer's disease. Brain Stimul. 2012 Jul;5(3):223-230. doi: 10.1016/j.brs.2011.06.006. Epub 2011 Jul 27.
Fregni F, Boggio PS, Santos MC, Lima M, Vieira AL, Rigonatti SP, Silva MT, Barbosa ER, Nitsche MA, Pascual-Leone A. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson's disease. Mov Disord. 2006 Oct;21(10):1693-702. doi: 10.1002/mds.21012.
Boggio PS, Ferrucci R, Rigonatti SP, Covre P, Nitsche M, Pascual-Leone A, Fregni F. Effects of transcranial direct current stimulation on working memory in patients with Parkinson's disease. J Neurol Sci. 2006 Nov 1;249(1):31-8. doi: 10.1016/j.jns.2006.05.062. Epub 2006 Jul 14.
Benninger DH, Lomarev M, Lopez G, Wassermann EM, Li X, Considine E, Hallett M. Transcranial direct current stimulation for the treatment of Parkinson's disease. J Neurol Neurosurg Psychiatry. 2010 Oct;81(10):1105-11. doi: 10.1136/jnnp.2009.202556.
Fregni F, Thome-Souza S, Nitsche MA, Freedman SD, Valente KD, Pascual-Leone A. A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy. Epilepsia. 2006 Feb;47(2):335-42. doi: 10.1111/j.1528-1167.2006.00426.x.
Varga ET, Terney D, Atkins MD, Nikanorova M, Jeppesen DS, Uldall P, Hjalgrim H, Beniczky S. Transcranial direct current stimulation in refractory continuous spikes and waves during slow sleep: a controlled study. Epilepsy Res. 2011 Nov;97(1-2):142-5. doi: 10.1016/j.eplepsyres.2011.07.016. Epub 2011 Aug 31.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
TBI_tDCS
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.