Application of Trans Cranial Direct Current Stimulation for Executive Dysfunction After Traumatic Brain Injury

NCT ID: NCT02331615

Last Updated: 2018-08-09

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

8 participants

Study Classification

INTERVENTIONAL

Study Start Date

2013-03-31

Study Completion Date

2017-03-21

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Traumatic brain injury (TBI) particularly affects the frontal lobes and patients often suffer from executive dysfunction and behavioral disturbances. These types of injuries often involve axonal damage to pre frontal brain areas, which mediate various cognitive and behavioral functions. Dorsolateral prefrontal circuit lesions cause executive dysfunction, orbitofrontal circuit lesions lead to personality changes characterized by disinhibition and anterior cingulate circuit lesions present with apathy. Patients who suffered traumatic frontal lobe damage often demonstrate a lasting, profound disturbance of emotional regulation and social cognition.

Weak transcranial direct current stimulation (tDCS) induces persisting excitability changes in the human motor cortex. this effect depends on the stimulation polarity and is specific to the site of stimulation. Interacting with cortical activity, by means of cortical stimulation, can positively affect the short-term cognitive performance and improve the rehabilitation potential of neurologic patients. In this respect, preliminary evidence suggests that cortical stimulation may play a role in treating aphasia, unilateral neglect, and other cognitive disorders.

Several possible mechanisms can account for the effects of tDCS and other methods on cognitive performance. They all reflect the potential of these methods to improve the subject's ability to relearn or to acquire new strategies for carrying out behavioral tasks. It was also found that Activation of prefrontal cortex by tDCS reduces appetite for risk during ambiguous decision making.

In this tDCS study the investigator uses one anode and one cathode electrode placed over the scalp to modulate a particular area of the central nervous system (CNS). The stimulation is administered via the neuroConn DC.Stimulator Serial number 0096. The DC-STIMULATOR is a micro-processor-controlled constant current source. The DC-STIMULATOR is a CE-certified medical device for conducting non-invasive transcranial direct current stimulation (tDCS) on people.Electrode positioning is determined according to the International EEG 10-20 System.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Traumatic Brain Injury

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NON_RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

TREATMENT

Blinding Strategy

DOUBLE

Participants Outcome Assessors

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Right

Electrode positioning will be determined according to the EEG 10-20 international system for EEG electrode placement: Right hemisphere anodal stimulation of the dorso lateral frontal area (F3), left hemisphere catodal stimulation of the dorso lateral frontal area (F4). Intensity of 1.5 mA (milliampere) for duration of 15 minutes. A total of 9 sessions: 4 sessions a week for 2 weeks.

Group Type EXPERIMENTAL

neuroConn_CE_DC-STIMULATOR

Intervention Type DEVICE

right frontal anodal stimulation

left

Electrode positioning will be determined according to the EEG 10-20 international system for EEG electrode placement: left hemisphere anodal stimulation of the dorso lateral frontal area (F3), right hemisphere catodal stimulation of the dorso lateral frontal area (F4). Intensity of mA1.5 (milliampere) for duration of 15 minutes. A total of 9 sessions: 4 sessions a week for 2 weeks.

Group Type EXPERIMENTAL

neuroConn_CE_DC-STIMULATOR

Intervention Type DEVICE

left frontal anodal stimulation

sham

The stimulator will be turned on for only a very short duration of time (msec) no meaningful stimulation is believed to be administered in such a way.

Group Type SHAM_COMPARATOR

SHAM

Intervention Type DEVICE

no meaningful stimulation will be given

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

neuroConn_CE_DC-STIMULATOR

right frontal anodal stimulation

Intervention Type DEVICE

neuroConn_CE_DC-STIMULATOR

left frontal anodal stimulation

Intervention Type DEVICE

SHAM

no meaningful stimulation will be given

Intervention Type DEVICE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Ages 18-70 years.
* Traumatic Brain injured patients who were diagnosed with executive function difficulties.
* Patients who are able to cooperate and comprehend simple instructions.
* Patients who can provide informed consent after both oral and written information was given and discussed.

Exclusion Criteria

* Pregnancy.
* Patients who sufferred a penetrating head trauma.
* Patients who underwent a frontal craniotomy
* Patients with a history of Psychiatric problems
* In cases of Severe Porencephaly at stimulation site
* Active Epilepsy or a history of seizure.
Minimum Eligible Age

18 Years

Maximum Eligible Age

70 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Loewenstein Hospital

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

yaron sacher

Application of Trans Cranial Direct Current stimulation for executive dysfunction after traumatic brain injury

Responsibility Role PRINCIPAL_INVESTIGATOR

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Loewenstein Rehabilitation Center

Raanana, , Israel

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Israel

References

Explore related publications, articles, or registry entries linked to this study.

Schroeter ML, Ettrich B, Schwier C, Scheid R, Guthke T, von Cramon DY. Diffuse axonal injury due to traumatic brain injury alters inhibition of imitative response tendencies. Neuropsychologia. 2007 Nov 5;45(14):3149-56. doi: 10.1016/j.neuropsychologia.2007.07.004. Epub 2007 Jul 14.

Reference Type BACKGROUND
PMID: 17727901 (View on PubMed)

Tekin S, Cummings JL. Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update. J Psychosom Res. 2002 Aug;53(2):647-54. doi: 10.1016/s0022-3999(02)00428-2.

Reference Type BACKGROUND
PMID: 12169339 (View on PubMed)

Cicerone KD, Tanenbaum LN. Disturbance of social cognition after traumatic orbitofrontal brain injury. Arch Clin Neuropsychol. 1997;12(2):173-88.

Reference Type BACKGROUND
PMID: 14588429 (View on PubMed)

Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, Marcolin MA, Rigonatti SP, Silva MT, Paulus W, Pascual-Leone A. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res. 2005 Sep;166(1):23-30. doi: 10.1007/s00221-005-2334-6. Epub 2005 Jul 6.

Reference Type BACKGROUND
PMID: 15999258 (View on PubMed)

Miniussi C, Cappa SF, Cohen LG, Floel A, Fregni F, Nitsche MA, Oliveri M, Pascual-Leone A, Paulus W, Priori A, Walsh V. Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimul. 2008 Oct;1(4):326-36. doi: 10.1016/j.brs.2008.07.002. Epub 2008 Oct 7.

Reference Type BACKGROUND
PMID: 20633391 (View on PubMed)

Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, Zago S, Barbieri S, Priori A. Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. J Cogn Neurosci. 2008 Sep;20(9):1687-97. doi: 10.1162/jocn.2008.20112.

Reference Type BACKGROUND
PMID: 18345990 (View on PubMed)

Fregni F, Boggio PS, Nitsche MA, Rigonatti SP, Pascual-Leone A. Cognitive effects of repeated sessions of transcranial direct current stimulation in patients with depression. Depress Anxiety. 2006;23(8):482-4. doi: 10.1002/da.20201. No abstract available.

Reference Type BACKGROUND
PMID: 16845648 (View on PubMed)

Fecteau S, Pascual-Leone A, Zald DH, Liguori P, Theoret H, Boggio PS, Fregni F. Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making. J Neurosci. 2007 Jun 6;27(23):6212-8. doi: 10.1523/JNEUROSCI.0314-07.2007.

Reference Type BACKGROUND
PMID: 17553993 (View on PubMed)

Beeli G, Casutt G, Baumgartner T, Jancke L. Modulating presence and impulsiveness by external stimulation of the brain. Behav Brain Funct. 2008 Aug 4;4:33. doi: 10.1186/1744-9081-4-33.

Reference Type BACKGROUND
PMID: 18680573 (View on PubMed)

Boggio PS, Ferrucci R, Rigonatti SP, Covre P, Nitsche M, Pascual-Leone A, Fregni F. Effects of transcranial direct current stimulation on working memory in patients with Parkinson's disease. J Neurol Sci. 2006 Nov 1;249(1):31-8. doi: 10.1016/j.jns.2006.05.062. Epub 2006 Jul 14.

Reference Type BACKGROUND
PMID: 16843494 (View on PubMed)

Jo JM, Kim YH, Ko MH, Ohn SH, Joen B, Lee KH. Enhancing the working memory of stroke patients using tDCS. Am J Phys Med Rehabil. 2009 May;88(5):404-9. doi: 10.1097/PHM.0b013e3181a0e4cb.

Reference Type BACKGROUND
PMID: 19620953 (View on PubMed)

Monti A, Cogiamanian F, Marceglia S, Ferrucci R, Mameli F, Mrakic-Sposta S, Vergari M, Zago S, Priori A. Improved naming after transcranial direct current stimulation in aphasia. J Neurol Neurosurg Psychiatry. 2008 Apr;79(4):451-3. doi: 10.1136/jnnp.2007.135277. Epub 2007 Dec 20.

Reference Type BACKGROUND
PMID: 18096677 (View on PubMed)

Bikson M, Datta A, Elwassif M. Establishing safety limits for transcranial direct current stimulation. Clin Neurophysiol. 2009 Jun;120(6):1033-4. doi: 10.1016/j.clinph.2009.03.018. Epub 2009 Apr 24. No abstract available.

Reference Type BACKGROUND
PMID: 19394269 (View on PubMed)

Poreisz C, Boros K, Antal A, Paulus W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull. 2007 May 30;72(4-6):208-14. doi: 10.1016/j.brainresbull.2007.01.004. Epub 2007 Jan 24.

Reference Type BACKGROUND
PMID: 17452283 (View on PubMed)

Dundas JE, Thickbroom GW, Mastaglia FL. Perception of comfort during transcranial DC stimulation: effect of NaCl solution concentration applied to sponge electrodes. Clin Neurophysiol. 2007 May;118(5):1166-70. doi: 10.1016/j.clinph.2007.01.010. Epub 2007 Feb 27.

Reference Type BACKGROUND
PMID: 17329167 (View on PubMed)

Palm U, Keeser D, Schiller C, Fintescu Z, Nitsche M, Reisinger E, Padberg F. Skin lesions after treatment with transcranial direct current stimulation (tDCS). Brain Stimul. 2008 Oct;1(4):386-7. doi: 10.1016/j.brs.2008.04.003. Epub 2008 Jun 20. No abstract available.

Reference Type BACKGROUND
PMID: 20633396 (View on PubMed)

Utz KS, Dimova V, Oppenlander K, Kerkhoff G. Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology--a review of current data and future implications. Neuropsychologia. 2010 Aug;48(10):2789-810. doi: 10.1016/j.neuropsychologia.2010.06.002. Epub 2010 Jun 11.

Reference Type BACKGROUND
PMID: 20542047 (View on PubMed)

Liebetanz D, Koch R, Mayenfels S, Konig F, Paulus W, Nitsche MA. Safety limits of cathodal transcranial direct current stimulation in rats. Clin Neurophysiol. 2009 Jun;120(6):1161-7. doi: 10.1016/j.clinph.2009.01.022. Epub 2009 Apr 28.

Reference Type BACKGROUND
PMID: 19403329 (View on PubMed)

Iyer MB, Mattu U, Grafman J, Lomarev M, Sato S, Wassermann EM. Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology. 2005 Mar 8;64(5):872-5. doi: 10.1212/01.WNL.0000152986.07469.E9.

Reference Type BACKGROUND
PMID: 15753425 (View on PubMed)

Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000 Sep 15;527 Pt 3(Pt 3):633-9. doi: 10.1111/j.1469-7793.2000.t01-1-00633.x.

Reference Type BACKGROUND
PMID: 10990547 (View on PubMed)

Nitsche MA, Niehaus L, Hoffmann KT, Hengst S, Liebetanz D, Paulus W, Meyer BU. MRI study of human brain exposed to weak direct current stimulation of the frontal cortex. Clin Neurophysiol. 2004 Oct;115(10):2419-23. doi: 10.1016/j.clinph.2004.05.001.

Reference Type BACKGROUND
PMID: 15351385 (View on PubMed)

Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001 Nov 27;57(10):1899-901. doi: 10.1212/wnl.57.10.1899.

Reference Type BACKGROUND
PMID: 11723286 (View on PubMed)

Boggio PS, Nunes A, Rigonatti SP, Nitsche MA, Pascual-Leone A, Fregni F. Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor Neurol Neurosci. 2007;25(2):123-9.

Reference Type BACKGROUND
PMID: 17726271 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

18-11-LOE

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Brain Stimulation for Mild Traumatic Brain Injury
NCT02292589 ACTIVE_NOT_RECRUITING PHASE2