Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
20 participants
INTERVENTIONAL
2022-05-01
2023-11-07
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Pulses: Optimizing Pulse Consumption for Cardiometabolic Health
NCT06861153
Impacts of Lentils on Metabolism and Inflammation
NCT04283448
Pulses Consumption and Its Role in Managing Systemic Inflammation, Insulin Sensitivity and Gut Microbiome in Human
NCT04267705
Comparing Effects of Fermented and Unfermented Pulses and Gut Microbiota
NCT06134076
Pulse Revolution: Enhancing Metabolic Health Through the Power of Processed Chickpeas
NCT06758869
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The overall goal of this research is to evaluate how pulse digestion and microbial fermentation influence the circulating and excreted metabolome. To achieve this goal, a randomized controlled feeding study including one week of control, low pulse and high pulse diet will be provided to participants. Metabolomics will be used to identify biomarkers or signatures for pulse enriched diets in urine and plasma. In addition, researchers will investigate dietary pulse related changes in the microbiome community and short chain fatty acid production in fecal samples.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
CROSSOVER
BASIC_SCIENCE
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Group 1
Order of treatments:
A: Control diet B: Low pulse diet C: High pulse diet
Control diet
The control Typical American Diet (TAD) diet pattern will mimic the level of intake of fruits, vegetables, whole grains, added sugars, saturated fats and sodium in the general U.S. population. This diet will feature no servings of pulses per day.
Low Pulse diet
The Low Pulse diet will be designed based on the TAD with substitution of pulses for lean meat and grains. This diet will feature 0.2 cups of pulses per day at 2,000 kilocalories (kcals).
High Pulse diet
The High Pulse diet will be designed based on the TAD with substitution of pulses for lean meat and grains. This diet will feature 1.5 cups of pulses per day at 2,000 kilocalories (kcals).
Group 2
Order of treatments:
A: Control diet C: High pulse diet B: Low pulse diet
Control diet
The control Typical American Diet (TAD) diet pattern will mimic the level of intake of fruits, vegetables, whole grains, added sugars, saturated fats and sodium in the general U.S. population. This diet will feature no servings of pulses per day.
Low Pulse diet
The Low Pulse diet will be designed based on the TAD with substitution of pulses for lean meat and grains. This diet will feature 0.2 cups of pulses per day at 2,000 kilocalories (kcals).
High Pulse diet
The High Pulse diet will be designed based on the TAD with substitution of pulses for lean meat and grains. This diet will feature 1.5 cups of pulses per day at 2,000 kilocalories (kcals).
Group 3
Order of treatments:
B: Low pulse diet A: Control diet C: High pulse diet
Control diet
The control Typical American Diet (TAD) diet pattern will mimic the level of intake of fruits, vegetables, whole grains, added sugars, saturated fats and sodium in the general U.S. population. This diet will feature no servings of pulses per day.
Low Pulse diet
The Low Pulse diet will be designed based on the TAD with substitution of pulses for lean meat and grains. This diet will feature 0.2 cups of pulses per day at 2,000 kilocalories (kcals).
High Pulse diet
The High Pulse diet will be designed based on the TAD with substitution of pulses for lean meat and grains. This diet will feature 1.5 cups of pulses per day at 2,000 kilocalories (kcals).
Group 4
Order of treatments:
B: Low pulse diet C: High pulse diet A: Control diet
Control diet
The control Typical American Diet (TAD) diet pattern will mimic the level of intake of fruits, vegetables, whole grains, added sugars, saturated fats and sodium in the general U.S. population. This diet will feature no servings of pulses per day.
Low Pulse diet
The Low Pulse diet will be designed based on the TAD with substitution of pulses for lean meat and grains. This diet will feature 0.2 cups of pulses per day at 2,000 kilocalories (kcals).
High Pulse diet
The High Pulse diet will be designed based on the TAD with substitution of pulses for lean meat and grains. This diet will feature 1.5 cups of pulses per day at 2,000 kilocalories (kcals).
Group 5
Order of treatments:
C: High pulse diet A: Control diet B: Low pulse diet
Control diet
The control Typical American Diet (TAD) diet pattern will mimic the level of intake of fruits, vegetables, whole grains, added sugars, saturated fats and sodium in the general U.S. population. This diet will feature no servings of pulses per day.
Low Pulse diet
The Low Pulse diet will be designed based on the TAD with substitution of pulses for lean meat and grains. This diet will feature 0.2 cups of pulses per day at 2,000 kilocalories (kcals).
High Pulse diet
The High Pulse diet will be designed based on the TAD with substitution of pulses for lean meat and grains. This diet will feature 1.5 cups of pulses per day at 2,000 kilocalories (kcals).
Group 6
Order of treatments:
C: High pulse diet B: Low pulse diet A: Control diet
Control diet
The control Typical American Diet (TAD) diet pattern will mimic the level of intake of fruits, vegetables, whole grains, added sugars, saturated fats and sodium in the general U.S. population. This diet will feature no servings of pulses per day.
Low Pulse diet
The Low Pulse diet will be designed based on the TAD with substitution of pulses for lean meat and grains. This diet will feature 0.2 cups of pulses per day at 2,000 kilocalories (kcals).
High Pulse diet
The High Pulse diet will be designed based on the TAD with substitution of pulses for lean meat and grains. This diet will feature 1.5 cups of pulses per day at 2,000 kilocalories (kcals).
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Control diet
The control Typical American Diet (TAD) diet pattern will mimic the level of intake of fruits, vegetables, whole grains, added sugars, saturated fats and sodium in the general U.S. population. This diet will feature no servings of pulses per day.
Low Pulse diet
The Low Pulse diet will be designed based on the TAD with substitution of pulses for lean meat and grains. This diet will feature 0.2 cups of pulses per day at 2,000 kilocalories (kcals).
High Pulse diet
The High Pulse diet will be designed based on the TAD with substitution of pulses for lean meat and grains. This diet will feature 1.5 cups of pulses per day at 2,000 kilocalories (kcals).
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Willingness to provide urine and stool and have blood drawn
Exclusion Criteria
* Tested positive for severe acute respiratory syndrome (SARS) Coronavirus (COV)-2 within the past 10 days
* Been in close contact with a SARS COV-2 positive person within the past 14 days
* Unwillingness to consume pulses or pulse-related products
* Fasting glucose ≥120 mg/dL
* Fasting triglyceride ≥400 mg/dL
* LDL-cholesterol ≥160 mg/dL
* Blood Pressure (BP): Systolic BP ≥140 mmHg or Diastolic BP ≥90 mmHg
* Current use of dietary supplements and/or unwillingness to cease intake of dietary supplements
* Vegan or vegetarian lifestyle or any other dietary restrictions that would interfere with consuming the intervention foods and beverages (including dietary intolerances, allergies and sensitivities)
* Unwillingness to consume intervention foods and beverages
* Engage in
* More than moderate drinking (\> 1 drink serving per day for women or \>2 drink servings per day for men).
* Binge drinking (4 drinks within two hours).
* Excessive intake of caffeine containing products (excessive defined as ≥ 400mg/day)
* Diagnosis of disordered eating or eating disorder
* Recent diagnosis of any of the following or measurement on screening lab tests
* Anemia (hemoglobin \<11.7g/dL)
* Abnormal liver function
* Liver Enzymes that are \>200% of upper limit (alanine aminotransferase (ALT) upper limit is 43 U/L or aspartate aminotransferase (AST) upper limit is 54 U/L)
* History of any of the following
* Gastric bypass surgery
* Inflammatory bowel disease (IBD) or other GI conditions that would interfere with consuming the intervention foods
* Active cancer in the past three years excluding squamous or basal cell carcinomas of the skin that have been handled medically by local excision
* Other serious medical conditions
* Recent dental work or have conditions of the oral cavity that would interfere with consuming the intervention foods and beverages
* Long term use of antibiotics
* Taking any over the counter or prescribed medication for any of the following
* Elevated lipids or glucose
* High blood pressure
* Weight loss
* Are pregnant, planning to become pregnant within the duration of the study or breastfeeding.
18 Years
65 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of California, Davis
OTHER
USDA, Western Human Nutrition Research Center
FED
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Brian J Bennett, PhD
Role: PRINCIPAL_INVESTIGATOR
USDA ARS Western Human Nutrition Research Center
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
USDA ARS Western Human Nutrition Research Center
Davis, California, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
McCrory MA, Hamaker BR, Lovejoy JC, Eichelsdoerfer PE. Pulse consumption, satiety, and weight management. Adv Nutr. 2010 Nov;1(1):17-30. doi: 10.3945/an.110.1006. Epub 2010 Nov 16.
Margier M, George S, Hafnaoui N, Remond D, Nowicki M, Du Chaffaut L, Amiot MJ, Reboul E. Nutritional Composition and Bioactive Content of Legumes: Characterization of Pulses Frequently Consumed in France and Effect of the Cooking Method. Nutrients. 2018 Nov 4;10(11):1668. doi: 10.3390/nu10111668.
Mudryj AN, Yu N, Aukema HM. Nutritional and health benefits of pulses. Appl Physiol Nutr Metab. 2014 Nov;39(11):1197-204. doi: 10.1139/apnm-2013-0557. Epub 2014 Jun 13.
Jenkins DJ, Kendall CW, Augustin LS, Mitchell S, Sahye-Pudaruth S, Blanco Mejia S, Chiavaroli L, Mirrahimi A, Ireland C, Bashyam B, Vidgen E, de Souza RJ, Sievenpiper JL, Coveney J, Leiter LA, Josse RG. Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: a randomized controlled trial. Arch Intern Med. 2012 Nov 26;172(21):1653-60. doi: 10.1001/2013.jamainternmed.70.
Anderson JW, Baird P, Davis RH Jr, Ferreri S, Knudtson M, Koraym A, Waters V, Williams CL. Health benefits of dietary fiber. Nutr Rev. 2009 Apr;67(4):188-205. doi: 10.1111/j.1753-4887.2009.00189.x.
Threapleton DE, Greenwood DC, Evans CE, Cleghorn CL, Nykjaer C, Woodhead C, Cade JE, Gale CP, Burley VJ. Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2013 Dec 19;347:f6879. doi: 10.1136/bmj.f6879.
Yao B, Fang H, Xu W, Yan Y, Xu H, Liu Y, Mo M, Zhang H, Zhao Y. Dietary fiber intake and risk of type 2 diabetes: a dose-response analysis of prospective studies. Eur J Epidemiol. 2014 Feb;29(2):79-88. doi: 10.1007/s10654-013-9876-x. Epub 2014 Jan 5.
Quagliani D, Felt-Gunderson P. Closing America's Fiber Intake Gap: Communication Strategies From a Food and Fiber Summit. Am J Lifestyle Med. 2016 Jul 7;11(1):80-85. doi: 10.1177/1559827615588079. eCollection 2017 Jan-Feb.
Makki K, Deehan EC, Walter J, Backhed F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe. 2018 Jun 13;23(6):705-715. doi: 10.1016/j.chom.2018.05.012.
Muller M, Hernandez MAG, Goossens GH, Reijnders D, Holst JJ, Jocken JWE, van Eijk H, Canfora EE, Blaak EE. Circulating but not faecal short-chain fatty acids are related to insulin sensitivity, lipolysis and GLP-1 concentrations in humans. Sci Rep. 2019 Aug 29;9(1):12515. doi: 10.1038/s41598-019-48775-0.
Wrzosek L, Miquel S, Noordine ML, Bouet S, Joncquel Chevalier-Curt M, Robert V, Philippe C, Bridonneau C, Cherbuy C, Robbe-Masselot C, Langella P, Thomas M. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol. 2013 May 21;11:61. doi: 10.1186/1741-7007-11-61.
McRorie JW Jr, McKeown NM. Understanding the Physics of Functional Fibers in the Gastrointestinal Tract: An Evidence-Based Approach to Resolving Enduring Misconceptions about Insoluble and Soluble Fiber. J Acad Nutr Diet. 2017 Feb;117(2):251-264. doi: 10.1016/j.jand.2016.09.021. Epub 2016 Nov 15.
Parada Venegas D, De la Fuente MK, Landskron G, Gonzalez MJ, Quera R, Dijkstra G, Harmsen HJM, Faber KN, Hermoso MA. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front Immunol. 2019 Mar 11;10:277. doi: 10.3389/fimmu.2019.00277. eCollection 2019.
Garcia-Mantrana I, Selma-Royo M, Alcantara C, Collado MC. Shifts on Gut Microbiota Associated to Mediterranean Diet Adherence and Specific Dietary Intakes on General Adult Population. Front Microbiol. 2018 May 7;9:890. doi: 10.3389/fmicb.2018.00890. eCollection 2018.
Gibson RS, Charrondiere UR, Bell W. Measurement Errors in Dietary Assessment Using Self-Reported 24-Hour Recalls in Low-Income Countries and Strategies for Their Prevention. Adv Nutr. 2017 Nov 15;8(6):980-991. doi: 10.3945/an.117.016980. Print 2017 Nov.
Corrigendum for McCullough et al. Metabolomic markers of healthy dietary patterns in US postmenopausal women. Am J Clin Nutr 2019;109:1439-51. Am J Clin Nutr. 2020 Mar 1;111(3):728. doi: 10.1093/ajcn/nqz235. No abstract available.
Ross AB, Bourgeois A, Macharia HN, Kochhar S, Jebb SA, Brownlee IA, Seal CJ. Plasma alkylresorcinols as a biomarker of whole-grain food consumption in a large population: results from the WHOLEheart Intervention Study. Am J Clin Nutr. 2012 Jan;95(1):204-11. doi: 10.3945/ajcn.110.008508. Epub 2011 Dec 14.
Brennan L, Hu FB. Metabolomics-Based Dietary Biomarkers in Nutritional Epidemiology-Current Status and Future Opportunities. Mol Nutr Food Res. 2019 Jan;63(1):e1701064. doi: 10.1002/mnfr.201701064. Epub 2018 May 28.
Madrid-Gambin F, Llorach R, Vazquez-Fresno R, Urpi-Sarda M, Almanza-Aguilera E, Garcia-Aloy M, Estruch R, Corella D, Andres-Lacueva C. Urinary 1H Nuclear Magnetic Resonance Metabolomic Fingerprinting Reveals Biomarkers of Pulse Consumption Related to Energy-Metabolism Modulation in a Subcohort from the PREDIMED study. J Proteome Res. 2017 Apr 7;16(4):1483-1491. doi: 10.1021/acs.jproteome.6b00860. Epub 2017 Mar 16.
Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990 Feb;51(2):241-7. doi: 10.1093/ajcn/51.2.241.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
FL115
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.