Exploring the Health Benefits Associated With Daily Pulse Consumption in Individuals With Peripheral Arterial Disease
NCT ID: NCT00755677
Last Updated: 2012-03-21
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
EARLY_PHASE1
26 participants
INTERVENTIONAL
2007-03-31
2008-07-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Effects of Pulse Varieties on Blood Vessel Function in Peripheral Artery Disease
NCT01382056
PERFECT Project - Part 1 - Study 2
NCT02366572
Pulse-based Foods for Alleviation of Negative Consequences of Sedentary Behaviour
NCT03941704
PERFECT Project - Part 2 - Study 2
NCT02370927
Roasted Pulse Snacks, Post-prandial Food Intake, Appetite, and Glycemia
NCT03223935
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
* Correlate serum adiponectin levels with daily intake of pulses in individuals with peripheral arterial disease
* Monitor changes in arterial stiffness and endothelial dysfunction in individuals with early stage cardiovascular disease
* Determine the tolerability of daily consumption of pulses in the targeted population
* Identify changes in the expression profile of white blood cells.
Study Duration: 12 months
Study Design:
* This is a single site, open registration, dietary proof of concept, food substance study designed to explore the health benefits associated with daily pulse consumption in individuals with arterial disease
* Each subject will undergo a 7-day adaptation period consisting of a consumption of ¼ cup of pulses per serving daily, followed by a minimum of ½ cup of pulses per serving daily
* Total duration of subject participation is 8 weeks;
* Subjects will be asked to attend 3 in-person clinic visits over the duration of their participation in the study for screening, registration/baseline and end of study assessments
* Telephone follow-up to subjects will occur at weeks 1,2,4, and 6
* Both clinical assessment and subject-based data will be collected at various points of the study schedule
* Subjects will be asked to complete a food frequency questionnaire at the outset, maintain a 3-day food record at two separate occasions, and undergo a brief semi-structured interview during the telephone follow-up assessments of the study
Assessments:
1. Screening Visit: Informed consent; inclusion/exclusion criteria assessment; medical history; physical exam; food frequency questionnaire; 3-day food record
2. Registration/Baseline: Registration; assess for changes to medical history (including medication profile) and physical condition; urine sample; fasting blood sample; assessment of arterial stiffness and ankle-brachial index; begin adaptation period (7 days)with food items containing ¼ c of pulses per serving
3. Visits 1,2,4 \& 6: Telephone follow-up to assess adverse events and tolerability with semi-structured subject interview; distribution (weekly) of food items containing a minimum of ½ cup pulses per serving; 3-day food record repeated at week 6
4. Visit 8 (final): Assess for adverse events and changes to medical history and physical exam; urine sample; fasting blood sample collection; assessment of arterial stiffness and and ankle-brachial index
Outcomes:
* Descriptive analysis of clinical data: Demographics, medical history, physical findings, concomitant medications and adverse events
* Identification of changes in endothelial function (determined by measuring pulse wave velocity (PWV), ankle-brachial index, soluble adhesion molecule levels and coagulation status) in response to dietary modification
* Correlation of serum adiponectin levels, including adiponectin multimers and truncated form (globular adiponectin) with endothelial function
* Correlation of changes in endothelial cell function with serum isoflavone levels
* Qualitative analysis of data collected from semi-structured subject interviews to assess parameters associated with tolerability of diet and to identify favoured recipes
* Profile cohort using 55,000 gene microarray to identify potential biomarkers and changes in gene expression (phenotype mapping) induced by diet
* Use microarrays to examine gene methylation and single nucleotide polymorphisms (SNP) in DNA samples to determine if changes in expression profile are due to epigenetic modification (global) or allelic (individual) variation in the study cohort in response to a pulse-enriched diet
* Serum and urinary eicosanoids will be analyzed by a multi-step procedure utilizing liquid chromatography, derivitization steps, thin-layer chromatography and gas chromatography-mass spectrometry
* Serum will also be analyzed for fatty acid composition using thin-layer chromatography and gas chromatography
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
SINGLE_GROUP
SUPPORTIVE_CARE
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
pulses
Interventional. Participants are registered sequentially to undergo daily consumption of pulses for eight weeks
Pulses
subjects consume 1 pulse food daily for eight weeks
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Pulses
subjects consume 1 pulse food daily for eight weeks
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Male or female (\> 40 years of age)
* Willing to comply with the protocol requirements
* Willing to provide informed consent
* Stable medication profile with no changes anticipated for the duration of the proposed study schedule (8 weeks)
Exclusion Criteria
* Currently smoking
* Hormone replacement therapy
* Inability to adhere to a regular diet
* Additional intake of pulses outside the planned daily requirements outlined in the study
* History of gastrointestinal reactions or allergies to pulses
40 Years
82 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Manitoba
OTHER
St. Boniface Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Dr.Peter Zahradka
Professor, Department of Physiology
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Peter Zahradka, PhD
Role: PRINCIPAL_INVESTIGATOR
St. Boniface Hospital
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
St. Boniface General Hospital
Winnipeg, Manitoba, Canada
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Wilson PW, D'Agostino RB, Sullivan L, Parise H, Kannel WB. Overweight and obesity as determinants of cardiovascular risk: the Framingham experience. Arch Intern Med. 2002 Sep 9;162(16):1867-72. doi: 10.1001/archinte.162.16.1867.
Calkin AC, Allen TJ. Diabetes mellitus-associated atherosclerosis: mechanisms involved and potential for pharmacological invention. Am J Cardiovasc Drugs. 2006;6(1):15-40. doi: 10.2165/00129784-200606010-00003.
Juvenile Diabetes Research Foundation (2005) http://www jdrf org au/publications/factsheets/complications html
Li TY, Rana JS, Manson JE, Willett WC, Stampfer MJ, Colditz GA, Rexrode KM, Hu FB. Obesity as compared with physical activity in predicting risk of coronary heart disease in women. Circulation. 2006 Jan 31;113(4):499-506. doi: 10.1161/CIRCULATIONAHA.105.574087.
British Heart Foundation Statistics (2006) www heartstats org
Houston DK, Stevens J, Cai J, Haines PS. Dairy, fruit, and vegetable intakes and functional limitations and disability in a biracial cohort: the Atherosclerosis Risk in Communities Study. Am J Clin Nutr. 2005 Feb;81(2):515-22. doi: 10.1093/ajcn.81.2.515.
Hu FB, Willett WC. Optimal diets for prevention of coronary heart disease. JAMA. 2002 Nov 27;288(20):2569-78. doi: 10.1001/jama.288.20.2569.
Bazzano LA, Serdula MK, Liu S. Dietary intake of fruits and vegetables and risk of cardiovascular disease. Curr Atheroscler Rep. 2003 Nov;5(6):492-9. doi: 10.1007/s11883-003-0040-z.
Anderson JW, Major AW. Pulses and lipaemia, short- and long-term effect: potential in the prevention of cardiovascular disease. Br J Nutr. 2002 Dec;88 Suppl 3:S263-71. doi: 10.1079/BJN2002716.
Castro IA, Barroso LP, Sinnecker P. Functional foods for coronary heart disease risk reduction: a meta-analysis using a multivariate approach. Am J Clin Nutr. 2005 Jul;82(1):32-40. doi: 10.1093/ajcn.82.1.32.
Rowland I. Optimal nutrition: fibre and phytochemicals. Proc Nutr Soc. 1999 May;58(2):415-9. doi: 10.1017/s0029665199000543.
Gylling H, Miettinen TA. The effect of plant stanol- and sterol-enriched foods on lipid metabolism, serum lipids and coronary heart disease. Ann Clin Biochem. 2005 Jul;42(Pt 4):254-63. doi: 10.1258/0004563054255605.
Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet. 1993 Oct 23;342(8878):1007-11. doi: 10.1016/0140-6736(93)92876-u.
Keli SO, Hertog MG, Feskens EJ, Kromhout D. Dietary flavonoids, antioxidant vitamins, and incidence of stroke: the Zutphen study. Arch Intern Med. 1996 Mar 25;156(6):637-42.
Wylie-Rosett J, Segal-Isaacson CJ, Segal-Isaacson A. Carbohydrates and increases in obesity: does the type of carbohydrate make a difference? Obes Res. 2004 Nov;12 Suppl 2:124S-9S. doi: 10.1038/oby.2004.277.
Delzenne NM, Cani PD. A place for dietary fibre in the management of the metabolic syndrome. Curr Opin Clin Nutr Metab Care. 2005 Nov;8(6):636-40. doi: 10.1097/01.mco.0000171124.06408.71.
Matvienko OA, Lewis DS, Swanson M, Arndt B, Rainwater DL, Stewart J, Alekel DL. A single daily dose of soybean phytosterols in ground beef decreases serum total cholesterol and LDL cholesterol in young, mildly hypercholesterolemic men. Am J Clin Nutr. 2002 Jul;76(1):57-64. doi: 10.1093/ajcn/76.1.57.
Sharma RD. Isoflavones and hypercholesterolemia in rats. Lipids. 1979 Jun;14(6):535-9. doi: 10.1007/BF02533528.
Beninger CW, Hosfield GL. Antioxidant activity of extracts, condensed tannin fractions, and pure flavonoids from Phaseolus vulgaris L. seed coat color genotypes. J Agric Food Chem. 2003 Dec 31;51(27):7879-83. doi: 10.1021/jf0304324.
Tsuda T, Ueno Y, Aoki H, Koda T, Horio F, Takahashi N, Kawada T, Osawa T. Anthocyanin enhances adipocytokine secretion and adipocyte-specific gene expression in isolated rat adipocytes. Biochem Biophys Res Commun. 2004 Mar 26;316(1):149-57. doi: 10.1016/j.bbrc.2004.02.031.
Cassidy A, Brown JE, Hawdon A, Faughnan MS, King LJ, Millward J, Zimmer-Nechemias L, Wolfe B, Setchell KD. Factors affecting the bioavailability of soy isoflavones in humans after ingestion of physiologically relevant levels from different soy foods. J Nutr. 2006 Jan;136(1):45-51. doi: 10.1093/jn/136.1.45.
Milerova J, Cerovska J, Zamrazil V, Bilek R, Lapcik O, Hampl R. Actual levels of soy phytoestrogens in children correlate with thyroid laboratory parameters. Clin Chem Lab Med. 2006;44(2):171-4. doi: 10.1515/CCLM.2006.031.
Huang Y, Cao S, Nagamani M, Anderson KE, Grady JJ, Lu LJ. Decreased circulating levels of tumor necrosis factor-alpha in postmenopausal women during consumption of soy-containing isoflavones. J Clin Endocrinol Metab. 2005 Jul;90(7):3956-62. doi: 10.1210/jc.2005-0161. Epub 2005 Apr 19.
Colacurci N, Chiantera A, Fornaro F, de Novellis V, Manzella D, Arciello A, Chiantera V, Improta L, Paolisso G. Effects of soy isoflavones on endothelial function in healthy postmenopausal women. Menopause. 2005 May-Jun;12(3):299-307. doi: 10.1097/01.gme.0000147017.23173.5b.
Heald CL, Bolton-Smith C, Ritchie MR, Morton MS, Alexander FE. Phyto-oestrogen intake in Scottish men: use of serum to validate a self-administered food-frequency questionnaire in older men. Eur J Clin Nutr. 2006 Jan;60(1):129-35. doi: 10.1038/sj.ejcn.1602277.
Ozasa K, Nakao M, Watanabe Y, Hayashi K, Miki T, Mikami K, Mori M, Sakauchi F, Washio M, Ito Y, Suzuki K, Kubo T, Wakai K, Tamakoshi A; JACC Study Group. Association of serum phytoestrogen concentration and dietary habits in a sample set of the JACC Study. J Epidemiol. 2005 Jun;15 Suppl 2(Suppl II):S196-202. doi: 10.2188/jea.15.s196.
Ma Y, Chiriboga D, Olendzki BC, Nicolosi R, Merriam PA, Ockene IS. Effect of soy protein containing isoflavones on blood lipids in moderately hypercholesterolemic adults: a randomized controlled trial. J Am Coll Nutr. 2005 Aug;24(4):275-85. doi: 10.1080/07315724.2005.10719475.
Trayhurn P, Bing C, Wood IS. Adipose tissue and adipokines--energy regulation from the human perspective. J Nutr. 2006 Jul;136(7 Suppl):1935S-1939S. doi: 10.1093/jn/136.7.1935S.
Kelesidis T, Mantzoros CS. The emerging role of leptin in humans. Pediatr Endocrinol Rev. 2006 Mar;3(3):239-48.
Beltowski J. Leptin and atherosclerosis. Atherosclerosis. 2006 Nov;189(1):47-60. doi: 10.1016/j.atherosclerosis.2006.03.003. Epub 2006 Apr 3.
Haluzik M, Haluzikova D. The role of resistin in obesity-induced insulin resistance. Curr Opin Investig Drugs. 2006 Apr;7(4):306-11.
Lam KS, Xu A. Adiponectin: protection of the endothelium. Curr Diab Rep. 2005 Aug;5(4):254-9. doi: 10.1007/s11892-005-0019-y.
Do D, Alvarez J, Chiquette E, Chilton R. The good fat hormone: adiponectin and cardiovascular disease. Curr Atheroscler Rep. 2006 Mar;8(2):94-9. doi: 10.1007/s11883-006-0045-5.
Haluzik M. Adiponectin and its potential in the treatment of obesity, diabetes and insulin resistance. Curr Opin Investig Drugs. 2005 Oct;6(10):988-93.
Okamoto Y, Kihara S, Ouchi N, Nishida M, Arita Y, Kumada M, Ohashi K, Sakai N, Shimomura I, Kobayashi H, Terasaka N, Inaba T, Funahashi T, Matsuzawa Y. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation. 2002 Nov 26;106(22):2767-70. doi: 10.1161/01.cir.0000042707.50032.19.
Clasen R, Schupp M, Foryst-Ludwig A, Sprang C, Clemenz M, Krikov M, Thone-Reineke C, Unger T, Kintscher U. PPARgamma-activating angiotensin type-1 receptor blockers induce adiponectin. Hypertension. 2005 Jul;46(1):137-43. doi: 10.1161/01.HYP.0000168046.19884.6a. Epub 2005 Jun 6.
Murdolo G, Smith U. The dysregulated adipose tissue: a connecting link between insulin resistance, type 2 diabetes mellitus and atherosclerosis. Nutr Metab Cardiovasc Dis. 2006 Mar;16 Suppl 1:S35-8. doi: 10.1016/j.numecd.2005.10.016. Epub 2006 Feb 9.
Smith J, Al-Amri M, Dorairaj P, Sniderman A. The adipocyte life cycle hypothesis. Clin Sci (Lond). 2006 Jan;110(1):1-9. doi: 10.1042/CS20050110.
Lofgren P, Andersson I, Wahrenberg H, Hoffstedt J. No difference in lipolysis or glucose transport of subcutaneous fat cells between moderate-fat and low-fat hypocaloric diets in obese women. Horm Metab Res. 2005 Dec;37(12):734-40. doi: 10.1055/s-2005-921095.
Farnier C, Krief S, Blache M, Diot-Dupuy F, Mory G, Ferre P, Bazin R. Adipocyte functions are modulated by cell size change: potential involvement of an integrin/ERK signalling pathway. Int J Obes Relat Metab Disord. 2003 Oct;27(10):1178-86. doi: 10.1038/sj.ijo.0802399.
Bays H, Dujovne CA. Adiposopathy is a more rational treatment target for metabolic disease than obesity alone. Curr Atheroscler Rep. 2006 Mar;8(2):144-56. doi: 10.1007/s11883-006-0052-6.
Wu ZH, Zhao SP. Adipocyte: a potential target for the treatment of atherosclerosis. Med Hypotheses. 2006;67(1):82-6. doi: 10.1016/j.mehy.2005.12.042. Epub 2006 Feb 24.
Erol A. The role of fat tissue in the cholesterol lowering and the pleiotropic effects of statins--statins activate the generation of metabolically more capable adipocytes. Med Hypotheses. 2005;64(1):69-73. doi: 10.1016/j.mehy.2004.06.014.
Noto A, Zahradka P, Yurkova N, Xie X, Nitschmann E, Ogborn M, Taylor CG. Conjugated linoleic acid reduces hepatic steatosis, improves liver function, and favorably modifies lipid metabolism in obese insulin-resistant rats. Lipids. 2006 Feb;41(2):179-88. doi: 10.1007/s11745-006-5086-6.
Dzau VJ, Braun-Dullaeus RC, Sedding DG. Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med. 2002 Nov;8(11):1249-56. doi: 10.1038/nm1102-1249. No abstract available.
Leterme P. Recommendations by health organizations for pulse consumption. Br J Nutr. 2002 Dec;88 Suppl 3:S239-42. doi: 10.1079/BJN2002712.
Statpub (2004) World edible bean industry growing slowly. http://www statpub com/open/123607/html
van der Vleuten GM, van Tits LJ, den Heijer M, Lemmers H, Stalenhoef AF, de Graaf J. Decreased adiponectin levels in familial combined hyperlipidemia patients contribute to the atherogenic lipid profile. J Lipid Res. 2005 Nov;46(11):2398-404. doi: 10.1194/jlr.M500212-JLR200. Epub 2005 Aug 16.
Yoshida H, Hirowatari Y, Kurosawa H, Tada N. Implications of decreased serum adiponectin for type IIb hyperlipidaemia and increased cholesterol levels of very-low-density lipoprotein in type II diabetic patients. Clin Sci (Lond). 2005 Sep;109(3):297-302. doi: 10.1042/CS20040353.
Anderson TJ. Arterial stiffness or endothelial dysfunction as a surrogate marker of vascular risk. Can J Cardiol. 2006 Feb;22 Suppl B(Suppl B):72B-80B. doi: 10.1016/s0828-282x(06)70990-4.
Tuomisto TT, Binder BR, Yla-Herttuala S. Genetics, genomics and proteomics in atherosclerosis research. Ann Med. 2005;37(5):323-32. doi: 10.1080/07853890510011949.
Guillon F, Champ MM. Carbohydrate fractions of legumes: uses in human nutrition and potential for health. Br J Nutr. 2002 Dec;88 Suppl 3:S293-306. doi: 10.1079/BJN2002720.
Rizkalla SW, Bellisle F, Slama G. Health benefits of low glycaemic index foods, such as pulses, in diabetic patients and healthy individuals. Br J Nutr. 2002 Dec;88 Suppl 3:S255-62. doi: 10.1079/BJN2002715.
Pittaway JK, Ahuja KD, Chronopoulos A et al (2004) The effect of chickpeas on human serum lipids and lipoproteins. Asia Pac J Clin Nutr 13: S70-S75.
He XZ, Reddy JT, Dixon RA. Stress responses in alfalfa (Medicago sativa L). XXII. cDNA cloning and characterization of an elicitor-inducible isoflavone 7-O-methyltransferase. Plant Mol Biol. 1998 Jan;36(1):43-54. doi: 10.1023/a:1005938121453.
Sumner LW, Paiva NL, Dixon RA, Geno PW. High-performance liquid chromatography/continuous-flow liquid secondary ion mass spectrometry of flavonoid glycosides in leguminous plant extracts. J Mass Spectrom. 1996 May;31(5):472-85. doi: 10.1002/(SICI)1096-9888(199605)31:53.0.CO;2-E.
Teede HJ, McGrath BP, DeSilva L, Cehun M, Fassoulakis A, Nestel PJ. Isoflavones reduce arterial stiffness: a placebo-controlled study in men and postmenopausal women. Arterioscler Thromb Vasc Biol. 2003 Jun 1;23(6):1066-71. doi: 10.1161/01.ATV.0000072967.97296.4A. Epub 2003 Apr 24.
DiCenzo GL, VanEtten HD. Studies on the late steps of (+) pisatin biosynthesis: evidence for (-) enantiomeric intermediates. Phytochemistry. 2006 Apr;67(7):675-83. doi: 10.1016/j.phytochem.2005.12.027. Epub 2006 Feb 28.
Tiemann K, Inze D, Van Montagu M, Barz W. Pterocarpan phytoalexin biosynthesis in elicitor-challenged chickpea (Cicer arietinum L.) cell cultures. Purification, characterization and cDNA cloning of NADPH:isoflavone oxidoreductase. Eur J Biochem. 1991 Sep 15;200(3):751-7. doi: 10.1111/j.1432-1033.1991.tb16241.x.
Robbins MP, Bolwell GP, Dixon RA. Metabolic changes in elicitor-treated bean cells. Selectivity of enzyme induction in relation to phytoalexin accumulation. Eur J Biochem. 1985 May 2;148(3):563-9. doi: 10.1111/j.1432-1033.1985.tb08877.x.
Ohkawara S, Okuma Y, Uehara T, Yamagishi T, Nomura Y. Astrapterocarpan isolated from Astragalus membranaceus inhibits proliferation of vascular smooth muscle cells. Eur J Pharmacol. 2005 Nov 21;525(1-3):41-7. doi: 10.1016/j.ejphar.2005.08.063. Epub 2005 Nov 16.
Genest J, Frohlich J, Fodor G, McPherson R; Working Group on Hypercholesterolemia and Other Dyslipidemias. Recommendations for the management of dyslipidemia and the prevention of cardiovascular disease: summary of the 2003 update. CMAJ. 2003 Oct 28;169(9):921-4. No abstract available.
Williamson G, Manach C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr. 2005 Jan;81(1 Suppl):243S-255S. doi: 10.1093/ajcn/81.1.243S.
Yamauchi T, Kamon J, Waki H, Imai Y, Shimozawa N, Hioki K, Uchida S, Ito Y, Takakuwa K, Matsui J, Takata M, Eto K, Terauchi Y, Komeda K, Tsunoda M, Murakami K, Ohnishi Y, Naitoh T, Yamamura K, Ueyama Y, Froguel P, Kimura S, Nagai R, Kadowaki T. Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem. 2003 Jan 24;278(4):2461-8. doi: 10.1074/jbc.M209033200. Epub 2002 Nov 12.
Tsao TS, Tomas E, Murrey HE, Hug C, Lee DH, Ruderman NB, Heuser JE, Lodish HF. Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity. Different oligomers activate different signal transduction pathways. J Biol Chem. 2003 Dec 12;278(50):50810-7. doi: 10.1074/jbc.M309469200. Epub 2003 Sep 30.
Boisclair MD, Ireland H, Lane DA. Assessment of hypercoagulable states by measurement of activation fragments and peptides. Blood Rev. 1990 Mar;4(1):25-40. doi: 10.1016/0268-960x(90)90014-j.
Wang G, Woo CW, Sung FL, Siow YL, O K. Increased monocyte adhesion to aortic endothelium in rats with hyperhomocysteinemia: role of chemokine and adhesion molecules. Arterioscler Thromb Vasc Biol. 2002 Nov 1;22(11):1777-83. doi: 10.1161/01.atv.0000035404.18281.37.
Barnes S, Coward L, Kirk M, Sfakianos J. HPLC-mass spectrometry analysis of isoflavones. Proc Soc Exp Biol Med. 1998 Mar;217(3):254-62. doi: 10.3181/00379727-217-44230.
Oliver JJ, Webb DJ. Noninvasive assessment of arterial stiffness and risk of atherosclerotic events. Arterioscler Thromb Vasc Biol. 2003 Apr 1;23(4):554-66. doi: 10.1161/01.ATV.0000060460.52916.D6. Epub 2003 Feb 6.
Celotti F, Durand T. The metabolic effects of inhibitors of 5-lipoxygenase and of cyclooxygenase 1 and 2 are an advancement in the efficacy and safety of anti-inflammatory therapy. Prostaglandins Other Lipid Mediat. 2003 Jul;71(3-4):147-62. doi: 10.1016/s1098-8823(03)00039-x.
Brune K. Safety of anti-inflammatory treatment--new ways of thinking. Rheumatology (Oxford). 2004 Feb;43 Suppl 1:i16-20. doi: 10.1093/rheumatology/keh104.
de Gaetano G, Donati MB, Cerletti C. Prevention of thrombosis and vascular inflammation: benefits and limitations of selective or combined COX-1, COX-2 and 5-LOX inhibitors. Trends Pharmacol Sci. 2003 May;24(5):245-52. doi: 10.1016/S0165-6147(03)00077-4.
Fischer S, Weber PC. Thromboxane (TX)A3 and prostaglandin (PG)I3 are formed in man after dietary eicosapentaenoic acid: identification and quantification by capillary gas chromatography-electron impact mass spectrometry. Biomed Mass Spectrom. 1985 Sep;12(9):470-6. doi: 10.1002/bms.1200120905.
Rupp H, Turcani M, Ohkubo T, Maisch B, Brilla CG. Dietary linolenic acid-mediated increase in vascular prostacyclin formation. Mol Cell Biochem. 1996 Sep 6;162(1):59-64. doi: 10.1007/BF00250996.
Kabagambe EK, Baylin A, Ruiz-Narvarez E, Siles X, Campos H. Decreased consumption of dried mature beans is positively associated with urbanization and nonfatal acute myocardial infarction. J Nutr. 2005 Jul;135(7):1770-5. doi: 10.1093/jn/135.7.1770.
Franke AA, Custer LJ, Cerna CM, Narala K. Rapid HPLC analysis of dietary phytoestrogens from legumes and from human urine. Proc Soc Exp Biol Med. 1995 Jan;208(1):18-26. doi: 10.3181/00379727-208-43826.
Renard C, Van Obberghen E. Role of diabetes in atherosclerotic pathogenesis. What have we learned from animal models? Diabetes Metab. 2006 Feb;32(1):15-29. doi: 10.1016/s1262-3636(07)70243-4.
Yamagishi S, Imaizumi T. Diabetic vascular complications: pathophysiology, biochemical basis and potential therapeutic strategy. Curr Pharm Des. 2005;11(18):2279-99. doi: 10.2174/1381612054367300.
Okada K, Maeda N, Kikuchi K, Tatsukawa M, Sawayama Y, Hayashi J. Pravastatin improves insulin resistance in dyslipidemic patients. J Atheroscler Thromb. 2005;12(6):322-9. doi: 10.5551/jat.12.322.
Lamendola C, Abbasi F, Chu JW, Hutchinson H, Cain V, Leary E, McLaughlin T, Stein E, Reaven G. Comparative effects of rosuvastatin and gemfibrozil on glucose, insulin, and lipid metabolism in insulin-resistant, nondiabetic patients with combined dyslipidemia. Am J Cardiol. 2005 Jan 15;95(2):189-93. doi: 10.1016/j.amjcard.2004.09.005.
Beckman JA, Creager MA. The nonlipid effects of statins on endothelial function. Trends Cardiovasc Med. 2006 Jul;16(5):156-62. doi: 10.1016/j.tcm.2006.03.003.
Fichtlscherer S, Schmidt-Lucke C, Bojunga S, Rossig L, Heeschen C, Dimmeler S, Zeiher AM. Differential effects of short-term lipid lowering with ezetimibe and statins on endothelial function in patients with CAD: clinical evidence for 'pleiotropic' functions of statin therapy. Eur Heart J. 2006 May;27(10):1182-90. doi: 10.1093/eurheartj/ehi881. Epub 2006 Apr 18.
Taneva E, Borucki K, Wiens L, Makarova R, Schmidt-Lucke C, Luley C, Westphal S. Early effects on endothelial function of atorvastatin 40 mg twice daily and its withdrawal. Am J Cardiol. 2006 Apr 1;97(7):1002-6. doi: 10.1016/j.amjcard.2005.10.032. Epub 2006 Feb 13.
Kougias P, Chai H, Lin PH, Yao Q, Lumsden AB, Chen C. Effects of adipocyte-derived cytokines on endothelial functions: implication of vascular disease. J Surg Res. 2005 Jun 1;126(1):121-9. doi: 10.1016/j.jss.2004.12.023.
Mahmud A, Feely J. Adiponectin and arterial stiffness. Am J Hypertens. 2005 Dec;18(12 Pt 1):1543-8. doi: 10.1016/j.amjhyper.2005.06.014.
Ekmekci H, Ekmekci OB. The role of adiponectin in atherosclerosis and thrombosis. Clin Appl Thromb Hemost. 2006 Apr;12(2):163-8. doi: 10.1177/107602960601200203.
Nagasawa A, Fukui K, Kojima M, Kishida K, Maeda N, Nagaretani H, Hibuse T, Nishizawa H, Kihara S, Waki M, Takamatsu K, Funahashi T, Matsuzawa Y. Divergent effects of soy protein diet on the expression of adipocytokines. Biochem Biophys Res Commun. 2003 Nov 28;311(4):909-14. doi: 10.1016/j.bbrc.2003.10.087.
Qi L, Rimm E, Liu S, Rifai N, Hu FB. Dietary glycemic index, glycemic load, cereal fiber, and plasma adiponectin concentration in diabetic men. Diabetes Care. 2005 May;28(5):1022-8. doi: 10.2337/diacare.28.5.1022.
Polson DA, Thompson MP. Macronutrient composition of the diet differentially affects leptin and adiponutrin mRNA expression in response to meal feeding. J Nutr Biochem. 2004 Apr;15(4):242-6. doi: 10.1016/j.jnutbio.2003.11.009.
Rossi AS, Lombardo YB, Lacorte JM, Chicco AG, Rouault C, Slama G, Rizkalla SW. Dietary fish oil positively regulates plasma leptin and adiponectin levels in sucrose-fed, insulin-resistant rats. Am J Physiol Regul Integr Comp Physiol. 2005 Aug;289(2):R486-R494. doi: 10.1152/ajpregu.00846.2004.
Flachs P, Mohamed-Ali V, Horakova O, Rossmeisl M, Hosseinzadeh-Attar MJ, Hensler M, Ruzickova J, Kopecky J. Polyunsaturated fatty acids of marine origin induce adiponectin in mice fed a high-fat diet. Diabetologia. 2006 Feb;49(2):394-7. doi: 10.1007/s00125-005-0053-y. Epub 2006 Jan 6.
Chan LL, Chen Q, Go AG, Lam EK, Li ET. Reduced adiposity in bitter melon (Momordica charantia)-fed rats is associated with increased lipid oxidative enzyme activities and uncoupling protein expression. J Nutr. 2005 Nov;135(11):2517-23. doi: 10.1093/jn/135.11.2517.
Fisher FM, Trujillo ME, Hanif W, Barnett AH, McTernan PG, Scherer PE, Kumar S. Serum high molecular weight complex of adiponectin correlates better with glucose tolerance than total serum adiponectin in Indo-Asian males. Diabetologia. 2005 Jun;48(6):1084-7. doi: 10.1007/s00125-005-1758-7. Epub 2005 May 19.
Lara-Castro C, Luo N, Wallace P, Klein RL, Garvey WT. Adiponectin multimeric complexes and the metabolic syndrome trait cluster. Diabetes. 2006 Jan;55(1):249-59.
Sumpio BE, Riley JT, Dardik A. Cells in focus: endothelial cell. Int J Biochem Cell Biol. 2002 Dec;34(12):1508-12. doi: 10.1016/s1357-2725(02)00075-4.
Pearson JD. Normal endothelial cell function. Lupus. 2000;9(3):183-8. doi: 10.1191/096120300678828299.
Constans J, Conri C. Circulating markers of endothelial function in cardiovascular disease. Clin Chim Acta. 2006 Jun;368(1-2):33-47. doi: 10.1016/j.cca.2005.12.030. Epub 2006 Mar 10.
Tang Y, Lu A, Aronow BJ, Sharp FR. Blood genomic responses differ after stroke, seizures, hypoglycemia, and hypoxia: blood genomic fingerprints of disease. Ann Neurol. 2001 Dec;50(6):699-707. doi: 10.1002/ana.10042.
Cooney CA, Dave AA, Wolff GL. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr. 2002 Aug;132(8 Suppl):2393S-2400S. doi: 10.1093/jn/132.8.2393S.
Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003 Mar;33 Suppl:245-54. doi: 10.1038/ng1089.
Rodenhiser D, Mann M. Epigenetics and human disease: translating basic biology into clinical applications. CMAJ. 2006 Jan 31;174(3):341-8. doi: 10.1503/cmaj.050774.
Sing CF, Stengard JH, Kardia SL. Genes, environment, and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2003 Jul 1;23(7):1190-6. doi: 10.1161/01.ATV.0000075081.51227.86. Epub 2003 May 1.
Rakyan VK, Preis J, Morgan HD, Whitelaw E. The marks, mechanisms and memory of epigenetic states in mammals. Biochem J. 2001 May 15;356(Pt 1):1-10. doi: 10.1042/0264-6021:3560001.
Waterland RA, Lin JR, Smith CA, Jirtle RL. Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (Igf2) locus. Hum Mol Genet. 2006 Mar 1;15(5):705-16. doi: 10.1093/hmg/ddi484. Epub 2006 Jan 18.
Esteller M, Almouzni G. How epigenetics integrates nuclear functions. Workshop on epigenetics and chromatin: transcriptional regulation and beyond. EMBO Rep. 2005 Jul;6(7):624-8. doi: 10.1038/sj.embor.7400456.
Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect. 2006 Apr;114(4):567-72. doi: 10.1289/ehp.8700.
Lorenz RL, Uedelhoven WM, Fischer S, Ruetzel A, Weber PC. A critical evaluation of urinary immunoreactive thromboxane: feasibility of its determination as a potential vascular risk indicator. Biochim Biophys Acta. 1989 Dec 8;993(2-3):259-65. doi: 10.1016/0304-4165(89)90174-8.
Nestel P, Fujii A, Zhang L. An isoflavone metabolite reduces arterial stiffness and blood pressure in overweight men and postmenopausal women. Atherosclerosis. 2007 May;192(1):184-9. doi: 10.1016/j.atherosclerosis.2006.04.033. Epub 2006 May 30.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
Pulse Study
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.