Coronary Microvascular Angina Cardiac Magnetic Resonance Imaging (CorCMR) Trial
NCT ID: NCT04805814
Last Updated: 2025-01-30
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
ACTIVE_NOT_RECRUITING
NA
280 participants
INTERVENTIONAL
2021-02-09
2034-10-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
The CorCMR diagnostic study involves stress perfusion CMR in patients with suspected INOCA to clarify the prevalence of subgroups of patients with underlying problems, such as microvascular disease or undisclosed obstructive coronary artery disease, that might explain their anginal symptoms.
A nested, prospective, randomised, controlled, double-blind trial will determine whether stratified medical therapy guided by the results of the stress perfusion CMR improves symptoms, well-being, cardiovascular risk and health and economic outcomes.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Non-invasive Diagnosis of Coronary Microvascular Disease: Pilot Study
NCT06070662
Myocardial Ischemia Detection With a Combined Cardiovascular Magnetic Resonance and Biomarker Protocol
NCT05813210
Mechanisms Behind Microvascular Dysfunction in INOCA
NCT06529861
Myocardial Ischemia Without Obstructive Coronary Stenoses
NCT04827498
Coronary Microvascular Dysfunction Assessments in Myocardial Infarction With Non-Obstructive Coronary Arteries
NCT05272618
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
There are approximately 2 million men and women living with angina in the UK. In 2014, there were \~247,000 coronary angiograms performed, mostly for the investigation of known or suspected angina. However, obstructive CAD is detected in only 1 in 2 patients. The explanation for the cause(s) of the chest pain are often unclear. Microvascular or vasospastic angina may be one explanation.
Adjunctive tests of coronary artery function to diagnose these problems are rarely used during coronary angiography in the NHS, meaning that patient management may be empirical and heterogeneous. The lack of adoption of these novel tests in the NHS reflects key gaps in the clinical evidence. It is these gaps, coupled with the increasing adoption of anatomical coronary artery imaging with CT coronary angiography (CTCA), which stimulate this research. In recent large clinical trials, CT coronary angiography has been shown not to reduce the rate of invasive angiography. In fact, compared to standard care based on stress testing, CTCA is associated with less improvement in anginal symptoms and in quality of life (PUBMED ID: 28246175). Anatomical tests, such as CTCA and invasive angiography, do not provide information on myocardial blood flow. New evidence that addresses these gaps might inform therapy development and future trials.
Current gaps in evidence and guidelines point to a problem of unmet need in the NHS care pathway. Stress perfusion CMR has potential diagnostic value for microvascular disease, but whether it might discriminate clinical endotypes in a relatively unselected population of patients in daily practice, is uncertain. Further, access to stress perfusion CMR varies widely not least because evidence from randomised trials supporting clinical and economic benefits from a CMR-guided approach is lacking. CorCMR is a clinical strategy trial that is designed to address this evidence gap.
Hypothesis:
In patients with angina in whom obstructive disease in the epicardial coronary arteries has been ruled out by coronary angiography ± FFR, stress perfusion CMR will reclassify the diagnosis leading to changes in treatment (start or stop therapy), improvements in health and economic outcomes, as compared to decisions based standard care (CMR not disclosed).
Design:
We propose that an observational, diagnostic study involving stress CMR will provide information on the prevalence of microvascular disease in a population with anginal symptoms potentially attributable to myocardial ischaemia with no obstructive coronary arteries (INOCA). Each diagnosis is linked to a guideline-directed treatment plan.The potential value of this strategy can only be confirmed if it is associated with patient benefits, which is why we propose a nested, randomised, controlled, double-blind trial of routine disclosure of stress perfusion CMR vs. angiography-guided management
Methods:
Patients undergoing invasive coronary angiography for the investigation of known or suspected angina and who do not have either structural heart disease or a systemic health problem that would explain those symptoms will be invited to participate. Written informed consent is required for participation. Eligibility is further confirmed at the time of the coronary angiogram by exclusion of obstructive (stenosis \>70% in a single segment or 50 - 70% in 2 adjacent segments in an artery \>2.5 mm, or FFR ≤0.80) coronary artery disease (CAD). Angina symptoms will be confirmed by the completion of validated questionnaires and patients will be invited to attend for a stress perfusion CMR within 3 months of the original coronary angiogram.
On arrival for the CMR, patients will be randomised (1:1) to either the intervention (CMR guided, results disclosed) or blinded control group (CMR undertaken but results not disclosed, standard of care) group.
Trial participants will be blinded to treatment group. The clinicians responsible for on-going care will also be blinded. The design is therefore 'double-blind'. Following the CMR, patients and clinicians will be advised of the diagnosis (endotype) but not the randomised group. The endotype will be informed by the CMR in the intervention group but not in the control group (CMR results not disclosed, angiography-guided). Medical therapy and lifestyle measures are linked to the endotype and informed by contemporary practice guidelines. Therefore, optimal guideline-directed medical care according to the endotype is intended to be the same, regardless of the group allocation.
The sample size is 280 randomised participants. The minimum follow-up duration is 12 months from the last participant recruitment. Follow-up will continued in the longer term including, where feasible, electronic case record linkage.
The primary outcome of the diagnostic study is the reclassification of the initial diagnosis based on findings from the cardiac MRI scan. The primary outcome of the nested randomised trial is the within-subject change at 6 months from baseline for the domains of the Seattle Angina Questionnaire.
Secondary outcomes include other Patient Reported Outcome Measures (PROMS) to describe other aspects of health and wellbeing. These include EQ-5D-5L, Illness perception (Brief IPQ), Treatment satisfaction (TSQM), Duke Activity Status Index (DASI), the International Physical Activity Questionnaire (IPAQ-SF) short-form and a pain questionnaire.
There is preliminary evidence that small vessel disease can be a systemic problem affecting different organs. Whether small vessel disease in the heart might associate with small vessel disease in the brain or retina is unknown. In the CorMicA pilot study, studies of small vessels isolated from biopsies found evidence of endothelial dysfunction and increased responsiveness of the blood vessels to naturally-occurring, constriction-inducing peptides such as endothelin and thromboxane. For these reasons, we plan heart-brain-retina and peripheral vascular substudies.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
DIAGNOSTIC
TRIPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Intervention Group
All randomised participants will receive stratified medicine. The subjects will undergo stress perfusion CMR as an adjunct to invasive coronary angiography. The CMR results will be disclosed to the clinician to clarify endotypes and re-evaluate the clinical diagnosis. Linked guideline-directed medical therapy and lifestyle measures will be recommended based on the endotype. The patient and clinicians responsible for downstream care will not be informed of the randomised group but they will be informed of the endotype and linked treatment plan, in the same way as in the Standard Care control group. They will be blinded to the allocated study arm and CMR findings.
CMR results disclosed
The results of the CMR are disclosed, and used to guide management
Standard Care Group
All randomised participants in this arm will receive standard angiography-guided care. The endotype will be determined based on the angiogram and all of the available clinical information. The participants in this group will also undergo stress perfusion CMR but the results will not be disclosed. Management of the patient is as per standard of care, with therapy linked to the diagnosis (endotype). The patient and clinicians responsible for downstream care will not be informed of the randomised group but they will be informed of the endotype and linked treatment plan in the same way as in the Intervention Group. They will be blinded to the allocated study arm and CMR findings.
CMR performed but results not disclosed
The results of the CMR are not disclosed, and management is angiography-guided
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
CMR results disclosed
The results of the CMR are disclosed, and used to guide management
CMR performed but results not disclosed
The results of the CMR are not disclosed, and management is angiography-guided
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. Symptoms of angina or angina-equivalent informed by the Rose Angina questionnaire.
3. Coronary angiography ≤3 months with a plan for medical management.
Exclusion Criteria
2. Coronary revascularization by percutaneous coronary intervention or coronary artery bypass graft surgery following the index angiogram.
3. Prior coronary artery bypass surgery
4. A diagnosis that would explain the angina e.g. anaemia, aortic stenosis, hypertrophic cardiomyopathy,
5. Contra-indication to contrast-enhanced CMR e.g. eGFR \< 30mL/min/1.73m2.
6. Contra-indication to intravenous adenosine, i.e. severe asthma; long QT syndrome; second- or third-degree AV block and sick sinus syndrome.
7. Lack of informed consent.
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Glasgow
OTHER
British Heart Foundation
OTHER
Chief Scientist Office of the Scottish Government
OTHER_GOV
NHS National Waiting Times Centre Board
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Colin Berry
Chief Investigator
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Colin Berry, MBChB, PhD
Role: PRINCIPAL_INVESTIGATOR
Univerisity of Glasgow
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University Hospital Hairmyres
East Kilbride, Glasgow, United Kingdom
University Hospital Ayr
Ayr, Scotland, United Kingdom
Golden Jubilee National Hospital
Glasgow, Scotland, United Kingdom
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Bradley CP, Berry C. Microvascular arterial disease of the brain and the heart: a shared pathogenesis. QJM. 2023 Oct 23;116(10):829-834. doi: 10.1093/qjmed/hcad158.
Bradley CP, Orchard V, McKinley G, Heggie R, Wu O, Good R, Watkins S, Lindsay M, Eteiba H, McGowan J, McGeoch R, Corcoran D, Kellman P, McConnachie A, Berry C. The coronary microvascular angina cardiovascular magnetic resonance imaging trial: Rationale and design. Am Heart J. 2023 Nov;265:213-224. doi: 10.1016/j.ahj.2023.08.067. Epub 2023 Aug 30.
Bradley C, Berry C. Definition and epidemiology of coronary microvascular disease. J Nucl Cardiol. 2022 Aug;29(4):1763-1775. doi: 10.1007/s12350-022-02974-x. Epub 2022 May 9.
Sidik NP, Stanley B, Sykes R, Morrow AJ, Bradley CP, McDermott M, Ford TJ, Roditi G, Hargreaves A, Stobo D, Adams J, Byrne J, Mahrous A, Young R, Carrick D, McGeoch R, Corcoran D, Lang NN, Heggie R, Wu O, McEntegart MB, McConnachie A, Berry C. Invasive Endotyping in Patients With Angina and No Obstructive Coronary Artery Disease: A Randomized Controlled Trial. Circulation. 2024 Jan 2;149(1):7-23. doi: 10.1161/CIRCULATIONAHA.123.064751. Epub 2023 Oct 5.
Ludman P on behalf of the British Cardiovascular Intervention Society (BCIS). BCIS Audit Returns for Adult Interventional Procedures (Jan - Dec 2016). October 2017. https://www.bcis.org.uk/resources/audit-results/
Williams MC, Hunter A, Shah A, Assi V, Lewis S, Mangion K, Berry C, Boon NA, Clark E, Flather M, Forbes J, McLean S, Roditi G, van Beek EJ, Timmis AD, Newby DE; Scottish COmputed Tomography of the HEART (SCOT-HEART) Trial Investigators. Symptoms and quality of life in patients with suspected angina undergoing CT coronary angiography: a randomised controlled trial. Heart. 2017 Jul;103(13):995-1001. doi: 10.1136/heartjnl-2016-310129. Epub 2017 Feb 28.
Ford TJ, Stanley B, Good R, Rocchiccioli P, McEntegart M, Watkins S, Eteiba H, Shaukat A, Lindsay M, Robertson K, Hood S, McGeoch R, McDade R, Yii E, Sidik N, McCartney P, Corcoran D, Collison D, Rush C, McConnachie A, Touyz RM, Oldroyd KG, Berry C. Stratified Medical Therapy Using Invasive Coronary Function Testing in Angina: The CorMicA Trial. J Am Coll Cardiol. 2018 Dec 11;72(23 Pt A):2841-2855. doi: 10.1016/j.jacc.2018.09.006. Epub 2018 Sep 25.
Ford TJ, Stanley B, Sidik N, Good R, Rocchiccioli P, McEntegart M, Watkins S, Eteiba H, Shaukat A, Lindsay M, Robertson K, Hood S, McGeoch R, McDade R, Yii E, McCartney P, Corcoran D, Collison D, Rush C, Sattar N, McConnachie A, Touyz RM, Oldroyd KG, Berry C. 1-Year Outcomes of Angina Management Guided by Invasive Coronary Function Testing (CorMicA). JACC Cardiovasc Interv. 2020 Jan 13;13(1):33-45. doi: 10.1016/j.jcin.2019.11.001. Epub 2019 Nov 11.
Kunadian V, Chieffo A, Camici PG, Berry C, Escaned J, Maas AHEM, Prescott E, Karam N, Appelman Y, Fraccaro C, Buchanan GL, Manzo-Silberman S, Al-Lamee R, Regar E, Lansky A, Abbott JD, Badimon L, Duncker DJ, Mehran R, Capodanno D, Baumbach A. An EAPCI Expert Consensus Document on Ischaemia with Non-Obstructive Coronary Arteries in Collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. EuroIntervention. 2021 Jan 20;16(13):1049-1069. doi: 10.4244/EIJY20M07_01.
Ford TJ, Berry C. Angina: contemporary diagnosis and management. Heart. 2020 Mar;106(5):387-398. doi: 10.1136/heartjnl-2018-314661. Epub 2020 Feb 12. No abstract available.
Corcoran D, Ford T, Hsu LY, Orchard V, Oldroyd KG, Arai AE, Berry C, on behalf of the CorMicA Investigators. The diagnostic utility of multiparametric CMR in patients with angina and non-obstructive coronary artery disease. Eur Heart J. 2020;
Kotecha T, Martinez-Naharro A, Boldrini M, Knight D, Hawkins P, Kalra S, Patel D, Coghlan G, Moon J, Plein S, Lockie T, Rakhit R, Patel N, Xue H, Kellman P, Fontana M. Automated Pixel-Wise Quantitative Myocardial Perfusion Mapping by CMR to Detect Obstructive Coronary Artery Disease and Coronary Microvascular Dysfunction: Validation Against Invasive Coronary Physiology. JACC Cardiovasc Imaging. 2019 Oct;12(10):1958-1969. doi: 10.1016/j.jcmg.2018.12.022. Epub 2019 Feb 13.
Hsu LY, Jacobs M, Benovoy M, Ta AD, Conn HM, Winkler S, Greve AM, Chen MY, Shanbhag SM, Bandettini WP, Arai AE. Diagnostic Performance of Fully Automated Pixel-Wise Quantitative Myocardial Perfusion Imaging by Cardiovascular Magnetic Resonance. JACC Cardiovasc Imaging. 2018 May;11(5):697-707. doi: 10.1016/j.jcmg.2018.01.005. Epub 2018 Feb 14.
Knott KD, Seraphim A, Augusto JB, Xue H, Chacko L, Aung N, Petersen SE, Cooper JA, Manisty C, Bhuva AN, Kotecha T, Bourantas CV, Davies RH, Brown LAE, Plein S, Fontana M, Kellman P, Moon JC. The Prognostic Significance of Quantitative Myocardial Perfusion: An Artificial Intelligence-Based Approach Using Perfusion Mapping. Circulation. 2020 Apr 21;141(16):1282-1291. doi: 10.1161/CIRCULATIONAHA.119.044666. Epub 2020 Feb 14.
Berry C, Sidik N, Pereira AC, Ford TJ, Touyz RM, Kaski JC, Hainsworth AH. Small-Vessel Disease in the Heart and Brain: Current Knowledge, Unmet Therapeutic Need, and Future Directions. J Am Heart Assoc. 2019 Feb 5;8(3):e011104. doi: 10.1161/JAHA.118.011104. No abstract available.
Ford TJ, Rocchiccioli P, Good R, McEntegart M, Eteiba H, Watkins S, Shaukat A, Lindsay M, Robertson K, Hood S, Yii E, Sidik N, Harvey A, Montezano AC, Beattie E, Haddow L, Oldroyd KG, Touyz RM, Berry C. Systemic microvascular dysfunction in microvascular and vasospastic angina. Eur Heart J. 2018 Dec 7;39(46):4086-4097. doi: 10.1093/eurheartj/ehy529.
Bradley CP, Orchard V, Sykes RA, McKinley G, McConnachie A, Donnelly P, Watt J, Kellman P, Quinn T, Fullerton N, Berry C. Heart-brain microvascular MRI study: protocol for a multicentre, observational, cohort study in the UK assessing associations between small vessel disease of the heart and brain. BMJ Open. 2024 Dec 20;14(12):e088372. doi: 10.1136/bmjopen-2024-088372.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
281128
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.