Strategy to Avoid Excessive Oxygen in Major Burn Patients
NCT ID: NCT04534972
Last Updated: 2025-04-02
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
ACTIVE_NOT_RECRUITING
PHASE3
2000 participants
INTERVENTIONAL
2021-04-15
2025-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Strategy to Avoid Excessive Oxygen for Critically Ill Trauma Patients
NCT04534959
Strategy to Avoid Excessive Oxygen Using an Autonomous Oxygen Titration Intervention
NCT06374225
Intra-operative Inspiratory Oxygen Fraction and Postoperative Respiratory Complications
NCT02399878
Evaluation of Oxygen Therapy Delivery Systems in Hypoxemic Acute Respiratory Failure
NCT01243918
High Flow Nasal Oxygen Therapy in Perioperative Period of the Adult With Hypercapnic and Hypoxemic Respiratory Faliure
NCT03229460
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Specific Aim: The purpose of this study is to determine the effectiveness of a multimodal educational intervention to reduce supplemental oxygen use in major burn patients. Investigators will also evaluate the safety and clinical effectiveness of the more targeted use of oxygen therapy.
Hypotheses: Clinical efforts to through a multimodal educational intervention will:
1. Improve the proportion of time spent within target normoxemia thresholds (oxygen saturation \[SpO2\] 90-96% and/or arterial oxygen \[PaO2\] 60-100 mmHg \[when applicable\])
2. Limiting use of excessive supplemental oxygen
3. Reduce exposure to hyperoxemia without a substantive increase in hypoxemic episodes or adverse effects
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Pre-Implementation
The control (pre-implementation) group will be burn patients admitted to the burn unit in ICU during the site's control period of the stepped-wedge implementation process (up to 22 months).
No interventions assigned to this group
Post-Implementation Targeting Normoxemia in Burn ICU
The intervention (post-implementation) group will be patients admitted to the burn unit in ICU during the targeting normoxemia intervention period of the stepped-wedge design implementation process (up to 19 months).
Targeting Normoxemia (SpO2 90-96%; PaO2 60-100 mmHg)
Post-implementation of targeted normoxemia through oxygen titration for individual patients. Intervention for treatment of hypoxemia will follow usual local practice. Interventions for treatment of hyperoxemia (SpO2 \>96% or PaO2 \> 100 mmHg) will involve down titration of FiO2 (or supplemental oxygen for non-mechanically ventilated patients) within a time frame based on local site preferences-typically in increments of no greater than 0.10 until goal oxygenation in the normoxemia range is achieved (including room air \[no supplemental oxygen\] for non-mechanically ventilated patients).
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Targeting Normoxemia (SpO2 90-96%; PaO2 60-100 mmHg)
Post-implementation of targeted normoxemia through oxygen titration for individual patients. Intervention for treatment of hypoxemia will follow usual local practice. Interventions for treatment of hyperoxemia (SpO2 \>96% or PaO2 \> 100 mmHg) will involve down titration of FiO2 (or supplemental oxygen for non-mechanically ventilated patients) within a time frame based on local site preferences-typically in increments of no greater than 0.10 until goal oxygenation in the normoxemia range is achieved (including room air \[no supplemental oxygen\] for non-mechanically ventilated patients).
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Admission to burn unit within 24 hours of burn injury
Exclusion Criteria
* Prisoners
* Known pregnancy
18 Years
120 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
United States Department of Defense
FED
University of Colorado, Denver
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Adit Ginde, MD, MPH
Role: PRINCIPAL_INVESTIGATOR
University of Colorado, Denver
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University of Alabama-Birmingham Medical Center
Birmingham, Alabama, United States
University of Colorado
Aurora, Colorado, United States
University of Cincinnati Medical Center
Cincinnati, Ohio, United States
University of Pittsburgh Medical Center
Pittsburgh, Pennsylvania, United States
Vanderbilt University Medical Center
Nashville, Tennessee, United States
Army Institute of Surgical Research
San Antonio, Texas, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Leverve XM. To cope with oxygen: a long and still tumultuous story for life. Crit Care Med. 2008 Feb;36(2):637-8. doi: 10.1097/CCM.0B013E31816296AD. No abstract available.
Damiani E, Adrario E, Girardis M, Romano R, Pelaia P, Singer M, Donati A. Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta-analysis. Crit Care. 2014 Dec 23;18(6):711. doi: 10.1186/s13054-014-0711-x.
Panwar R, Capellier G, Schmutz N, Davies A, Cooper DJ, Bailey M, Baguley D, Pilcher V, Bellomo R. Current oxygenation practice in ventilated patients-an observational cohort study. Anaesth Intensive Care. 2013 Jul;41(4):505-14. doi: 10.1177/0310057X1304100412.
Suzuki S, Eastwood GM, Peck L, Glassford NJ, Bellomo R. Current oxygen management in mechanically ventilated patients: a prospective observational cohort study. J Crit Care. 2013 Oct;28(5):647-54. doi: 10.1016/j.jcrc.2013.03.010. Epub 2013 May 15.
Rachmale S, Li G, Wilson G, Malinchoc M, Gajic O. Practice of excessive F(IO(2)) and effect on pulmonary outcomes in mechanically ventilated patients with acute lung injury. Respir Care. 2012 Nov;57(11):1887-93. doi: 10.4187/respcare.01696. Epub 2012 May 15.
Parke RL, Eastwood GM, McGuinness SP; George Institute for Global Health; Australian and New Zealand Intensive Care Society Clinical Trials Group. Oxygen therapy in non-intubated adult intensive care patients: a point prevalence study. Crit Care Resusc. 2013 Dec;15(4):287-93.
Iscoe S, Beasley R, Fisher JA. Supplementary oxygen for nonhypoxemic patients: O2 much of a good thing? Crit Care. 2011;15(3):305. doi: 10.1186/cc10229. Epub 2011 Jun 30.
Panwar R, Young P, Capellier G. Conservative oxygen therapy in mechanically ventilated patients. Crit Care Med. 2014 Sep;42(9):e630-1. doi: 10.1097/CCM.0000000000000439. No abstract available.
de Graaff AE, Dongelmans DA, Binnekade JM, de Jonge E. Clinicians' response to hyperoxia in ventilated patients in a Dutch ICU depends on the level of FiO2. Intensive Care Med. 2011 Jan;37(1):46-51. doi: 10.1007/s00134-010-2025-z. Epub 2010 Sep 28.
Girardis M, Busani S, Damiani E, Donati A, Rinaldi L, Marudi A, Morelli A, Antonelli M, Singer M. Effect of Conservative vs Conventional Oxygen Therapy on Mortality Among Patients in an Intensive Care Unit: The Oxygen-ICU Randomized Clinical Trial. JAMA. 2016 Oct 18;316(15):1583-1589. doi: 10.1001/jama.2016.11993.
de Jonge E, Peelen L, Keijzers PJ, Joore H, de Lange D, van der Voort PH, Bosman RJ, de Waal RA, Wesselink R, de Keizer NF. Association between administered oxygen, arterial partial oxygen pressure and mortality in mechanically ventilated intensive care unit patients. Crit Care. 2008;12(6):R156. doi: 10.1186/cc7150. Epub 2008 Dec 10.
Pannu SR. Too Much Oxygen: Hyperoxia and Oxygen Management in Mechanically Ventilated Patients. Semin Respir Crit Care Med. 2016 Feb;37(1):16-22. doi: 10.1055/s-0035-1570359. Epub 2016 Jan 28.
Kallet RH, Branson RD. Should Oxygen Therapy Be Tightly Regulated to Minimize Hyperoxia in Critically Ill Patients? Respir Care. 2016 Jun;61(6):801-17. doi: 10.4187/respcare.04933.
Hafner S, Beloncle F, Koch A, Radermacher P, Asfar P. Hyperoxia in intensive care, emergency, and peri-operative medicine: Dr. Jekyll or Mr. Hyde? A 2015 update. Ann Intensive Care. 2015 Dec;5(1):42. doi: 10.1186/s13613-015-0084-6. Epub 2015 Nov 19.
Singh V, Devgan L, Bhat S, Milner SM. The pathogenesis of burn wound conversion. Ann Plast Surg. 2007 Jul;59(1):109-15. doi: 10.1097/01.sap.0000252065.90759.e6.
Cancio LC, Barillo DJ, Kearns RD, Holmes JH 4th, Conlon KM, Matherly AF, Cairns BA, Hickerson WL, Palmieri T. Guidelines for Burn Care Under Austere Conditions: Surgical and Nonsurgical Wound Management. J Burn Care Res. 2017 Jul/Aug;38(4):203-214. doi: 10.1097/BCR.0000000000000368. No abstract available.
Palmieri TL, Przkora R, Meyer WJ 3rd, Carrougher GJ. Measuring burn injury outcomes. Surg Clin North Am. 2014 Aug;94(4):909-16. doi: 10.1016/j.suc.2014.05.010.
Kao Y, Loh EW, Hsu CC, Lin HJ, Huang CC, Chou YY, Lien CC, Tam KW. Fluid Resuscitation in Patients With Severe Burns: A Meta-analysis of Randomized Controlled Trials. Acad Emerg Med. 2018 Mar;25(3):320-329. doi: 10.1111/acem.13333. Epub 2017 Nov 11.
Helmerhorst HJ, Roos-Blom MJ, van Westerloo DJ, de Jonge E. Association Between Arterial Hyperoxia and Outcome in Subsets of Critical Illness: A Systematic Review, Meta-Analysis, and Meta-Regression of Cohort Studies. Crit Care Med. 2015 Jul;43(7):1508-19. doi: 10.1097/CCM.0000000000000998.
Austin MA, Wills KE, Blizzard L, Walters EH, Wood-Baker R. Effect of high flow oxygen on mortality in chronic obstructive pulmonary disease patients in prehospital setting: randomised controlled trial. BMJ. 2010 Oct 18;341:c5462. doi: 10.1136/bmj.c5462.
Chi JH, Knudson MM, Vassar MJ, McCarthy MC, Shapiro MB, Mallet S, Holcroft JJ, Moncrief H, Noble J, Wisner D, Kaups KL, Bennick LD, Manley GT. Prehospital hypoxia affects outcome in patients with traumatic brain injury: a prospective multicenter study. J Trauma. 2006 Nov;61(5):1134-41. doi: 10.1097/01.ta.0000196644.64653.d8.
Panwar R, Hardie M, Bellomo R, Barrot L, Eastwood GM, Young PJ, Capellier G, Harrigan PW, Bailey M; CLOSE Study Investigators; ANZICS Clinical Trials Group. Conservative versus Liberal Oxygenation Targets for Mechanically Ventilated Patients. A Pilot Multicenter Randomized Controlled Trial. Am J Respir Crit Care Med. 2016 Jan 1;193(1):43-51. doi: 10.1164/rccm.201505-1019OC.
ICU-ROX Investigators and the Australian and New Zealand Intensive Care Society Clinical Trials Group; Mackle D, Bellomo R, Bailey M, Beasley R, Deane A, Eastwood G, Finfer S, Freebairn R, King V, Linke N, Litton E, McArthur C, McGuinness S, Panwar R, Young P; ICU-ROX Investigators the Australian and New Zealand Intensive Care Society Clinical Trials Group. Conservative Oxygen Therapy during Mechanical Ventilation in the ICU. N Engl J Med. 2020 Mar 12;382(11):989-998. doi: 10.1056/NEJMoa1903297. Epub 2019 Oct 14.
Schmidt B, Whyte RK, Asztalos EV, Moddemann D, Poets C, Rabi Y, Solimano A, Roberts RS; Canadian Oxygen Trial (COT) Group. Effects of targeting higher vs lower arterial oxygen saturations on death or disability in extremely preterm infants: a randomized clinical trial. JAMA. 2013 May 22;309(20):2111-20. doi: 10.1001/jama.2013.5555.
Stockinger ZT, Mcswain NE Jr. Prehospital supplemental oxygen in trauma patients: its efficacy and implications for military medical care. Mil Med. 2004 Aug;169(8):609-12. doi: 10.7205/milmed.169.8.609.
Meyhoff CS, Wetterslev J, Jorgensen LN, Henneberg SW, Hogdall C, Lundvall L, Svendsen PE, Mollerup H, Lunn TH, Simonsen I, Martinsen KR, Pulawska T, Bundgaard L, Bugge L, Hansen EG, Riber C, Gocht-Jensen P, Walker LR, Bendtsen A, Johansson G, Skovgaard N, Helto K, Poukinski A, Korshin A, Walli A, Bulut M, Carlsson PS, Rodt SA, Lundbech LB, Rask H, Buch N, Perdawid SK, Reza J, Jensen KV, Carlsen CG, Jensen FS, Rasmussen LS; PROXI Trial Group. Effect of high perioperative oxygen fraction on surgical site infection and pulmonary complications after abdominal surgery: the PROXI randomized clinical trial. JAMA. 2009 Oct 14;302(14):1543-50. doi: 10.1001/jama.2009.1452.
Stub D, Smith K, Bernard S, Nehme Z, Stephenson M, Bray JE, Cameron P, Barger B, Ellims AH, Taylor AJ, Meredith IT, Kaye DM; AVOID Investigators. Air Versus Oxygen in ST-Segment-Elevation Myocardial Infarction. Circulation. 2015 Jun 16;131(24):2143-50. doi: 10.1161/CIRCULATIONAHA.114.014494. Epub 2015 May 22.
Suzuki S, Eastwood GM, Glassford NJ, Peck L, Young H, Garcia-Alvarez M, Schneider AG, Bellomo R. Conservative oxygen therapy in mechanically ventilated patients: a pilot before-and-after trial. Crit Care Med. 2014 Jun;42(6):1414-22. doi: 10.1097/CCM.0000000000000219.
Eastwood GM, Peck L, Young H, Suzuki S, Garcia M, Bellomo R. Intensive care clinicians' opinion of conservative oxygen therapy (SpO(2) 90-92%) for mechanically ventilated patients. Aust Crit Care. 2014 Aug;27(3):120-5. doi: 10.1016/j.aucc.2013.11.004. Epub 2013 Dec 24.
Helmerhorst HJ, Schultz MJ, van der Voort PH, Bosman RJ, Juffermans NP, de Jonge E, van Westerloo DJ. Self-reported attitudes versus actual practice of oxygen therapy by ICU physicians and nurses. Ann Intensive Care. 2014 Jul 25;4:23. doi: 10.1186/s13613-014-0023-y. eCollection 2014.
Acute Respiratory Distress Syndrome Network; Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000 May 4;342(18):1301-8. doi: 10.1056/NEJM200005043421801.
Baker DW, Persell SD. Criteria for waiver of informed consent for quality improvement research. JAMA Intern Med. 2015 Jan;175(1):142-3. doi: 10.1001/jamainternmed.2014.6977. No abstract available.
McKinney RE Jr, Beskow LM, Ford DE, Lantos JD, McCall J, Patrick-Lake B, Pletcher MJ, Rath B, Schmidt H, Weinfurt K. Use of altered informed consent in pragmatic clinical research. Clin Trials. 2015 Oct;12(5):494-502. doi: 10.1177/1740774515597688. Epub 2015 Sep 15.
Douin DJ, Schauer SG, Anderson EL, Jones J, DeSanto K, Cunningham CW, Bebarta VS, Ginde AA. Systematic review of oxygenation and clinical outcomes to inform oxygen targets in critically ill trauma patients. J Trauma Acute Care Surg. 2019 Oct;87(4):961-977. doi: 10.1097/TA.0000000000002392.
BOOST II United Kingdom Collaborative Group; BOOST II Australia Collaborative Group; BOOST II New Zealand Collaborative Group; Stenson BJ, Tarnow-Mordi WO, Darlow BA, Simes J, Juszczak E, Askie L, Battin M, Bowler U, Broadbent R, Cairns P, Davis PG, Deshpande S, Donoghoe M, Doyle L, Fleck BW, Ghadge A, Hague W, Halliday HL, Hewson M, King A, Kirby A, Marlow N, Meyer M, Morley C, Simmer K, Tin W, Wardle SP, Brocklehurst P. Oxygen saturation and outcomes in preterm infants. N Engl J Med. 2013 May 30;368(22):2094-104. doi: 10.1056/NEJMoa1302298. Epub 2013 May 5.
SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network; Carlo WA, Finer NN, Walsh MC, Rich W, Gantz MG, Laptook AR, Yoder BA, Faix RG, Das A, Poole WK, Schibler K, Newman NS, Ambalavanan N, Frantz ID 3rd, Piazza AJ, Sanchez PJ, Morris BH, Laroia N, Phelps DL, Poindexter BB, Cotten CM, Van Meurs KP, Duara S, Narendran V, Sood BG, O'Shea TM, Bell EF, Ehrenkranz RA, Watterberg KL, Higgins RD. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med. 2010 May 27;362(21):1959-69. doi: 10.1056/NEJMoa0911781. Epub 2010 May 16.
Hussey MA, Hughes JP. Design and analysis of stepped wedge cluster randomized trials. Contemp Clin Trials. 2007 Feb;28(2):182-91. doi: 10.1016/j.cct.2006.05.007. Epub 2006 Jul 7.
Douin DJ, Rice JD, Xiao M, Jackson CL, Anderson EL, Cheng AC, Cwik J, Beaty LE, Wild JL, Beyene RT, Britton GW, Corcos AC, Dale EL, Hwang J, Jansen JO, Self WH, Slater JC, Steinwand A, Wiktor AJ, Ziembicki J, Schauer SG, Bebarta VS, Cancio L, Ginde AA; Strategy to Avoid Excessive Oxygen (SAVE-O2) Investigators. Effect of targeting normoxemia on supplemental oxygen-free days for adults with acute thermal burns: A stepped wedge cluster randomized clinical trial. J Trauma Acute Care Surg. 2025 Oct 1;99(4):619-627. doi: 10.1097/TA.0000000000004712. Epub 2025 Jul 3.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
19-2799
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.