Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
250 participants
OBSERVATIONAL
2025-01-01
2027-01-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
During spontaneous breathing, inspiratory muscle contractions produce parallel deflections of the pleural and esophageal pressure (ΔPes), which reflect the magnitude of the effort. Unlike changes in pleural pressure, ΔPes can be easily measured at the bedside using a catheter similar to a typical nasogastric tube. In healthy subjects, ΔPes is only a few cmH2O during quiet breathing but \>10-15 cmH2O during vigorous exercise or carbon dioxide inhalation. In patients with ARF, the upper limit for a "safe" ΔPes is unknown. Nonetheless, according to experts, breathing efforts with a ΔPes \>10-15 cmH2O are probably too strong to be tolerated for a long time.
However, esophageal manometry is not widely available. Estimating breathing efforts without it is complex, especially in non-intubated patients. Doctors mostly rely on their gestalt or overall impression. Therefore, it is unsurprising that they may disagree when rating their patients' breathing efforts or debating whether to proceed to intubation.
The investigators have recently developed two clinical prediction models for estimating the breathing effort of patients with ARF from a few variables readily available at the bedside. The first, "linear", model estimates the continuous value of ΔPes (in cmH2O) from the presence or absence of COVID-19, arterial base excess concentration (BEa) (in mmol/L), respiratory rate (in bpm), the ratio of the arterial tension to the inspiratory fraction of oxygen (PaO2:FiO2) (in mmHg), and the product term between COVID-19 and PaO2:FiO2. The calibration slope was 1, and the adjusted R2 was 0.39. The second, "logistic", model estimates the probability of ΔPes being \>10 cmH2O (dichotomous outcome) from BEa (in mmol/L), respiratory rate (in bpm), and PaO2:FiO2 (in mmHg). When this model was tested on the same data set used to develop it (apparent performance), the area under the ROC curve (AUROC) was 0.79 (95% CI, 0.73-0.85). At internal validation (optimism-corrected performance), the AUROC was 0.76 (0.71-0.81). The investigators called these models BREF, which stands for BReathing EFfort, but also to the three main predictors: BEa (B), respiratory rate (RE), and PaO2:FiO2 (F).
Study aims The main goal of this study is to evaluate the BREF models' predictive performance in a new population. This process is known as "external validation". Additionally, there are two other secondary objectives. The investigators aim to update the BREF models by adding more variables unavailable in the development dataset (method "extension") and compare the accuracy of the BREF models with that of doctors who do not use them in assessing their patients' breathing efforts.
Study population
Inclusion criteria:
* adult (≥18 years of age) patients in the ICU
* treated with high-flow oxygen delivered via nasal cannula
* equipped with an esophageal balloon as per local clinical practice.
Exclusion criteria:
* history of chronic lung disease
* cardiogenic pulmonary edema
* \>96 hours from admission to the participating unit.
Methods First, participants will record all the variables needed to estimate ΔPes using the original version of the BREF models. These are the presence or absence of COVID-19, BEa, respiratory rate, PaO2:FiO2, and the product term between COVID-19 and PaO2:FiO2. Moreover, participants will record other variables that may help predict ΔPes based on scientific reasoning. Next, the attending doctor (blinded to the actual ΔPes) will assess the patient's breathing effort based on clinical judgment. Third, the actual ΔPes will be measured with esophageal manometry. Finally, the participants will record the type of respiratory support provided to the patient in the 72 hours following the study, the length of stay in the unit, and the vital status of the patient (dead or alive) at discharge from the unit.
Sample size calculation This study aims to enroll 250 patients in approximately two years.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Short Term Physiological Effects of Nasal High Flow Oxygen on Respiratory Mechanics
NCT02363920
High-flow Oxygen Therapy vs Non-invasive Ventilation: Comparison of Alveolar Recruitment in Acute Respiratory Failure
NCT04664322
Early Non-invasive Ventilation Outside the Intensive Care Unit
NCT01572337
Non-invasive Ventilation in Terminally Ill Cancer Patients
NCT00533143
The Effects of Different Non-invasive Respiratory Support
NCT07247318
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* treated with high-flow oxygen delivered via nasal cannula
* equipped with an esophageal balloon as per local clinical practice.
Exclusion Criteria
* cardiogenic pulmonary edema
* \>96 hours from admission to the participating unit.
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Istituto Clinico Humanitas
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
IRCCS Humanitas Research Hospital
Rozzano, Milan, Italy
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Protti A, Tonelli R, Dalla Corte F, Grieco DL, Spinelli E, Spadaro S, Piovani D, Menga LS, Schifino G, Vega Pittao ML, Umbrello M, Cammarota G, Volta CA, Bonovas S, Cecconi M, Mauri T, Clini E. Development of clinical tools to estimate the breathing effort during high-flow oxygen therapy: A multicenter cohort study. Pulmonology. 2025 Dec 31;31(1):2416837. doi: 10.1016/j.pulmoe.2024.04.008. Epub 2024 Oct 25.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
ANE/OSS-2024-001
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.