Vascular Function Improvements After Chronic Passive Stretching

NCT ID: NCT04271241

Last Updated: 2020-02-17

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

39 participants

Study Classification

INTERVENTIONAL

Study Start Date

2019-01-07

Study Completion Date

2020-02-07

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Acutely, during different bouts of passive stretching (PS), blood flow (Q ̇) and shear rate ( ) in the feeding artery of the stretched muscles increases during the first two elongations and then it reduces during the following bouts. This hyperemic response during the first two elongations is mediated by the local release of vasoactive molecules (e.g. nitric oxide, NO). This phenomenon disappears during the following elongations due to the NO and other vasoactive molecule depletion. The relaxation phase between stretching bouts, instead, is always characterized by hyperemia as results of stretch-induced peripheral resistances decrease. Whether chronic PS administration may influence vascular function is still a matter of investigation. The hypothesis is that repetitive PS-induced Q ̇ and changes may be an enough stimulus to provoke increments in NO bioavailability, thus improving vasomotor response.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Vasomotor response is an important marker of cardiovascular health and has been related to cardiovascular co-morbidity. An alteration of vasomotor response, indeed, often precedes an increase in arterial stiffness. By improving and/or maintaining this vascular function, therefore, plays a pivotal role in the prevention of cardiovascular disease. The overall control of the vasomotor response and, in turn, of blood flow distribution in the human body is regulated by two main mechanisms: a systemic control given by the sympathetic nervous system that acts on the arterial smooth muscle fibers causing vasoconstriction, and a local action of vasoactive molecules released by the endothelial cells, such as nitric oxide (NO), leading to vasodilation.

Recent studies report that acute passive stretching (PS), a well-established practice in rehabilitation and sport environments to increase range of motion, may influence the vasomotor response. Specifically, PS provokes two conflicting events: (i) a vasoconstriction with blood flow reduction in the feeding artery of the stretched muscle, triggered by the systemic increase in sympathetic neural tone due to the PS-induced stress on the muscle mechano- and metaboreceptors, and (ii) a vasodilation and subsequent increase in blood flow in the feeding artery due to the prevalence of local vasoactive factors release as a result of the stretch-induced stress applied to the vessel wall, which overwhelms the systemic sympathetic activation. Interestingly, throughout several stretch-shortening cycles, the first acute hyperemic response to stretch described above seems to progressively attenuate until its disappearance during the subsequent stretching cycles, possibly due to NO and other vasoactive molecules depletion.

The shortening phase in between two stretch bouts, instead, is always characterized by hyperemia due to a reduction in the peripheral vascular resistance after the stretch-induced vessels deformation. Possible explanation of these phenomena involves the shear rate, which is the frictional or drag force acting on the inner lumen of the vessels that can trigger a chain of reactions, possibly leading to higher endothelial NO-synthase activity. Continuous and repetitive increases in shear rate induced by PS have been observed to act as vascular training to modulate endothelium remodeling and to improve vasomotor response.

Interestingly, during an acute PS administration, a reduction in blood flow during stretching was described in the contralateral, no-stretched limb. Such a reduction was promptly recovered during the shortening phase. The authors suggested that this occurrence was induced by a systemic sympathetic-mediated vasoconstriction, which was activated by the stretch-induced mechanoreflex.

However, whether chronic PS administration may also affect the vasomotor response in the feeding artery of the contralateral muscle, which was not directly involved in the stretching maneuver, is still an open question.

Together with the changes in local control mechanisms, also possible PS-induced changes in the systemic autonomic control of blood flow has been reported (i.e., reduction in blood pressure and aortic wave reflection magnitude, although its effectiveness remains a matter of debate With this in mind, this study aimed to investigate the effect of PS on the vasomotor response and the stiffness of the arteries directly involved (i.e., femoral and popliteal arteries) and not directly involved (i.e., contralateral femoral and popliteal arteries and brachial artery) with the maneuver applied on the plantar flexors, knee extensor and hip flexor muscles. To this purpose, vasomotor response and arterial stiffness were assessed by Doppler ultrasounds and applanation tonometry, respectively, before and after 12 weeks of PS administration. Hypothesis has been made that repetitive PS bouts, with consequent changes in blood flow and shear rate, may be an effective stimulus to (i) enhance local vasoactive molecules bioavailability in the arteries involved with PS; and (ii) induce a systemic re-modulation of the sympathetic autonomic activity, thus improving arterial compliance and vasomotor response even in those districts not directly involved with PS.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Vasodilation Vasoconstriction Stretch Sympathetic; Imbalance

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Four groups in parallel (three intervention groups and one control) tested at the beginning, during, after and after six weeks (follow-up) from intervention
Primary Study Purpose

TREATMENT

Blinding Strategy

SINGLE

Outcome Assessors
Outcomes assessor are in-blind about the participants' allocation

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Control (Ctrl)

Ctrl group di not undergo any training

Group Type NO_INTERVENTION

No interventions assigned to this group

PS bilateral limbs (PSBil)

PSBil underwent 12 weeks of passive stretching on both the lower limbs

Group Type EXPERIMENTAL

Passive stretching (PS) training

Intervention Type OTHER

PSBil and PSMono underwent 12 weeks of PS training, 3 sessions per week (36 sessions in total). In PSBil, each session lasted 40 min and included two maneuvers for both the knee extensor and plantar flexor muscles with the following protocol: 45 s elongation and 15 s recovery in the resting position, all the cycle repeated for five times 7. In PSMono, exercises were performed only on the right limb and each session had a duration of 20 min. Ctrl did not underwent any PS exercise throughout the study. To promote participants' compliance, daily classes were held at different day time (morning and afternoon) at the University Sports Centre gym. Each class was supervised by an expert operator, which monitored the attendance, the correct exercise execution and the intensity exerted during the exercise (80% of the point of discomfort). The participants not attending at least the 80% of classes were excluded from the study, and a new participant was recruited to substitute the drop out.

PS monolateral limb, stretched limb (PSMonoSL)

PSMonoSL underwent 12 weeks of passive stretching on just one lower limb (SL). Outcomes form this group were obtained from the stretched

Group Type EXPERIMENTAL

Passive stretching (PS) training

Intervention Type OTHER

PSBil and PSMono underwent 12 weeks of PS training, 3 sessions per week (36 sessions in total). In PSBil, each session lasted 40 min and included two maneuvers for both the knee extensor and plantar flexor muscles with the following protocol: 45 s elongation and 15 s recovery in the resting position, all the cycle repeated for five times 7. In PSMono, exercises were performed only on the right limb and each session had a duration of 20 min. Ctrl did not underwent any PS exercise throughout the study. To promote participants' compliance, daily classes were held at different day time (morning and afternoon) at the University Sports Centre gym. Each class was supervised by an expert operator, which monitored the attendance, the correct exercise execution and the intensity exerted during the exercise (80% of the point of discomfort). The participants not attending at least the 80% of classes were excluded from the study, and a new participant was recruited to substitute the drop out.

PS monolateral limb, contralateral limb PSMonoCL

PSMonoCL involved the same participants as in PSMonoSL. Outcomes form this group were obtained from the contralateral not stretched limb (CL). Data from this limb helped in identify possible PS-induced crossover effects in the vasomotor response.

Group Type EXPERIMENTAL

Passive stretching (PS) training

Intervention Type OTHER

PSBil and PSMono underwent 12 weeks of PS training, 3 sessions per week (36 sessions in total). In PSBil, each session lasted 40 min and included two maneuvers for both the knee extensor and plantar flexor muscles with the following protocol: 45 s elongation and 15 s recovery in the resting position, all the cycle repeated for five times 7. In PSMono, exercises were performed only on the right limb and each session had a duration of 20 min. Ctrl did not underwent any PS exercise throughout the study. To promote participants' compliance, daily classes were held at different day time (morning and afternoon) at the University Sports Centre gym. Each class was supervised by an expert operator, which monitored the attendance, the correct exercise execution and the intensity exerted during the exercise (80% of the point of discomfort). The participants not attending at least the 80% of classes were excluded from the study, and a new participant was recruited to substitute the drop out.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Passive stretching (PS) training

PSBil and PSMono underwent 12 weeks of PS training, 3 sessions per week (36 sessions in total). In PSBil, each session lasted 40 min and included two maneuvers for both the knee extensor and plantar flexor muscles with the following protocol: 45 s elongation and 15 s recovery in the resting position, all the cycle repeated for five times 7. In PSMono, exercises were performed only on the right limb and each session had a duration of 20 min. Ctrl did not underwent any PS exercise throughout the study. To promote participants' compliance, daily classes were held at different day time (morning and afternoon) at the University Sports Centre gym. Each class was supervised by an expert operator, which monitored the attendance, the correct exercise execution and the intensity exerted during the exercise (80% of the point of discomfort). The participants not attending at least the 80% of classes were excluded from the study, and a new participant was recruited to substitute the drop out.

Intervention Type OTHER

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

• None

Exclusion Criteria

* presence of neurological, vascular and musculoskeletal impairments at the lower and upper limbs level;
* being on pharmacological therapy related to either neural and/or vascular response, including hormonal contraceptives and oral supplements;
* being a current or former smoker;
* having an irregular menstrual cycle (26 to 35 days) up to three months before the beginning of the study,
* presenting contraindication for joint mobilization;
* being regularly involved in PS program.
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

University of Milan

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Emilano Cè

Associate Professor

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Emiliano Cè, PhD

Role: PRINCIPAL_INVESTIGATOR

University of Milan

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Department of Biomedical Science for Health

Milan, , Italy

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Italy

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

Stretching vasomotor response

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.