Intraoperative Blood Pressure Management and Dexamethasone in Lung Cancer Surgery
NCT ID: NCT04209218
Last Updated: 2025-07-31
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
NA
1988 participants
INTERVENTIONAL
2020-04-07
2029-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Dexamethasone, Flurbiprofen Axetil and Long-term Survival After Lung Cancer Surgery
NCT03172988
Risk Factors for Postoperative Cough in Patients Undergoing Thoracoscopic Lung Resection
NCT06476249
Effect of Dexmedetomidine on the Inflammatory Response After One-lung Ventilation
NCT04007341
Improving Patient-reported Outcomes After Lung Cancer Surgery With Mobile Internet Platform
NCT06483295
Epidural Anesthesia-analgesia and Long-term Survival After Lung Cancer Surgery
NCT02801409
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Even under well controlled conditions, blood pressure fluctuation frequently occurs during anesthesia and surgery. In previous studies, intraoperative hypotension was associated with increased risk of organ injuries (such as delirium, acute kidney injury, myocardial injury, and stroke) and higher 1-year mortality. Unpublished data showed that intraoperative hypotension was also associated with shortened long-term survival in patients after lung cancer surgery. In a recent trial, individualized intraoperative blood pressure management which avoided intraoperative hypotension decreased the incidence of postoperative organ injury when compared with routine practice. Avoiding intraoperative hypotension may also prolong survival after lung cancer surgery. However, evidences are lacking regarding this topic.
Dexamethasone is frequently used for prevention of postoperative nausea and vomiting. Studies showed that a single low-dose dexamethasone has anti-inflammatory effect and can regulate immune function. It has been shown that perioperative dexamethasone can improve analgesia after surgery. In retrospective studies, perioperative low-dose dexamethasone was associated with less wound infection and improved long-term survival in patients after surgeries for pancreatic and lung cancer. It is hypothesized that intraoperative dexamethasone may reduce postoperative complications and improve long-term survival after lung cancer surgery. Interventional studies are required to confirm this hypothesis.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
FACTORIAL
PREVENTION
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Routine blood pressure management + placebo
Blood pressure is maintained according to routine practice. Placebo (normal saline 2 ml) is administered before anesthesia induction.
Placebo
Placebo (2 ml normal saline) is administered before anesthesia induction.
Routine blood presure management
Blood pressure is maintained according to routine practice.
Routine blood pressure management + dexamethasone
Blood pressure is maintained according to routine practice. Dexamethasone (10 mg/2 ml) ia administered before anesthesia induction.
Dexamethasone
Dexamethasone (10 mg/2 ml) is administered before anesthesia induction.
Routine blood presure management
Blood pressure is maintained according to routine practice.
Targeted blood pressure management + placebo
Blood pressure is maintained within ±10% from baseline. Placebo (normal saline 2 ml) is administered before anesthesia induction.
Targeted blood pressure management
Blood pressure is maintained within ±10% from baseline.
Placebo
Placebo (2 ml normal saline) is administered before anesthesia induction.
Targeted blood pressure management + dexamethasone
Blood pressure is maintained within ±10% from baseline. Dexamethasone (10 mg/2 ml) is administered before anesthesia induction.
Dexamethasone
Dexamethasone (10 mg/2 ml) is administered before anesthesia induction.
Targeted blood pressure management
Blood pressure is maintained within ±10% from baseline.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Dexamethasone
Dexamethasone (10 mg/2 ml) is administered before anesthesia induction.
Targeted blood pressure management
Blood pressure is maintained within ±10% from baseline.
Placebo
Placebo (2 ml normal saline) is administered before anesthesia induction.
Routine blood presure management
Blood pressure is maintained according to routine practice.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Diagnosed as resectable primary non-small cell lung cancer (stage IA-IIIA) and scheduled for radical surgery with an expected duration of \>2 hours.
* Agree to participate in this study and sign the informed consent.
Exclusion Criteria
* Recurrent or metastatic lung cancer.
* History of cancer or complicated with cancer in other organs.
* Long-term exposure to glucocorticoids or other immunosuppressant(s) due to autoimmune disease or organ transplantation.
* Uncontrolled hypertension (systolic blood pressure \>180 mmHg or diastolic blood pressure \>110 mmHg); or requirement of vasopressors to maintain blood pressure.
* Persistent atrial fibrillation, or acute cardiovascular events (acute coronary syndrome, stroke, or congestive heart failure) within 3 months.
* Severe hepatic dysfunction (Child-Pugh C) or renal failure (requirement of renal replacement therapy).
* Any other circumstances considered unsuitable for study participation by attending physicians or investigators.
50 Years
90 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Peking University First Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Dong-Xin Wang
Chairman, Department of Anaesthesiology and Critical Care Medicine
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Dong-Xin Wang, MD, PhD
Role: PRINCIPAL_INVESTIGATOR
Peking University First Hospital
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital
Beijing, Beijing Municipality, China
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. Epub 2018 Sep 12.
Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J. Cancer statistics in China, 2015. CA Cancer J Clin. 2016 Mar-Apr;66(2):115-32. doi: 10.3322/caac.21338. Epub 2016 Jan 25.
Sullivan R, Alatise OI, Anderson BO, Audisio R, Autier P, Aggarwal A, Balch C, Brennan MF, Dare A, D'Cruz A, Eggermont AM, Fleming K, Gueye SM, Hagander L, Herrera CA, Holmer H, Ilbawi AM, Jarnheimer A, Ji JF, Kingham TP, Liberman J, Leather AJ, Meara JG, Mukhopadhyay S, Murthy SS, Omar S, Parham GP, Pramesh CS, Riviello R, Rodin D, Santini L, Shrikhande SV, Shrime M, Thomas R, Tsunoda AT, van de Velde C, Veronesi U, Vijaykumar DK, Watters D, Wang S, Wu YL, Zeiton M, Purushotham A. Global cancer surgery: delivering safe, affordable, and timely cancer surgery. Lancet Oncol. 2015 Sep;16(11):1193-224. doi: 10.1016/S1470-2045(15)00223-5.
Vansteenkiste J, Crino L, Dooms C, Douillard JY, Faivre-Finn C, Lim E, Rocco G, Senan S, Van Schil P, Veronesi G, Stahel R, Peters S, Felip E; Panel Members. 2nd ESMO Consensus Conference on Lung Cancer: early-stage non-small-cell lung cancer consensus on diagnosis, treatment and follow-up. Ann Oncol. 2014 Aug;25(8):1462-74. doi: 10.1093/annonc/mdu089. Epub 2014 Feb 20.
Emmert A, Straube C, Buentzel J, Roever C. Robotic versus thoracoscopic lung resection: A systematic review and meta-analysis. Medicine (Baltimore). 2017 Sep;96(35):e7633. doi: 10.1097/MD.0000000000007633.
Ciechanowicz SJ, Ma D. Anaesthesia for oncological surgery - can it really influence cancer recurrence? Anaesthesia. 2016 Feb;71(2):127-31. doi: 10.1111/anae.13342. Epub 2015 Dec 16. No abstract available.
Kim R. Anesthetic technique and cancer recurrence in oncologic surgery: unraveling the puzzle. Cancer Metastasis Rev. 2017 Mar;36(1):159-177. doi: 10.1007/s10555-016-9647-8.
Byrne K, Levins KJ, Buggy DJ. Can anesthetic-analgesic technique during primary cancer surgery affect recurrence or metastasis? Can J Anaesth. 2016 Feb;63(2):184-92. doi: 10.1007/s12630-015-0523-8.
Mascha EJ, Yang D, Weiss S, Sessler DI. Intraoperative Mean Arterial Pressure Variability and 30-day Mortality in Patients Having Noncardiac Surgery. Anesthesiology. 2015 Jul;123(1):79-91. doi: 10.1097/ALN.0000000000000686.
Lonjaret L, Lairez O, Minville V, Geeraerts T. Optimal perioperative management of arterial blood pressure. Integr Blood Press Control. 2014 Sep 12;7:49-59. doi: 10.2147/IBPC.S45292. eCollection 2014.
Charlson ME, MacKenzie CR, Gold JP, Ales KL, Topkins M, Shires GT. Preoperative characteristics predicting intraoperative hypotension and hypertension among hypertensives and diabetics undergoing noncardiac surgery. Ann Surg. 1990 Jul;212(1):66-81. doi: 10.1097/00000658-199007000-00010.
Bijker JB, van Klei WA, Vergouwe Y, Eleveld DJ, van Wolfswinkel L, Moons KG, Kalkman CJ. Intraoperative hypotension and 1-year mortality after noncardiac surgery. Anesthesiology. 2009 Dec;111(6):1217-26. doi: 10.1097/ALN.0b013e3181c14930.
Monk TG, Bronsert MR, Henderson WG, Mangione MP, Sum-Ping ST, Bentt DR, Nguyen JD, Richman JS, Meguid RA, Hammermeister KE. Association between Intraoperative Hypotension and Hypertension and 30-day Postoperative Mortality in Noncardiac Surgery. Anesthesiology. 2015 Aug;123(2):307-19. doi: 10.1097/ALN.0000000000000756.
Scholz AF, Oldroyd C, McCarthy K, Quinn TJ, Hewitt J. Systematic review and meta-analysis of risk factors for postoperative delirium among older patients undergoing gastrointestinal surgery. Br J Surg. 2016 Jan;103(2):e21-8. doi: 10.1002/bjs.10062. Epub 2015 Dec 16.
Futier E, Lefrant JY, Guinot PG, Godet T, Lorne E, Cuvillon P, Bertran S, Leone M, Pastene B, Piriou V, Molliex S, Albanese J, Julia JM, Tavernier B, Imhoff E, Bazin JE, Constantin JM, Pereira B, Jaber S; INPRESS Study Group. Effect of Individualized vs Standard Blood Pressure Management Strategies on Postoperative Organ Dysfunction Among High-Risk Patients Undergoing Major Surgery: A Randomized Clinical Trial. JAMA. 2017 Oct 10;318(14):1346-1357. doi: 10.1001/jama.2017.14172.
Younes RN, Rogatko A, Brennan MF. The influence of intraoperative hypotension and perioperative blood transfusion on disease-free survival in patients with complete resection of colorectal liver metastases. Ann Surg. 1991 Aug;214(2):107-13. doi: 10.1097/00000658-199108000-00003.
Park SY, Lee JG, Kim J, Bae MK, Lee CY, Kim DJ, Chung KY. The influence of smoking intensity on the clinicopathologic features and survival of patients with surgically treated non-small cell lung cancer. Lung Cancer. 2013 Sep;81(3):480-486. doi: 10.1016/j.lungcan.2013.07.002. Epub 2013 Jul 26.
Yu HC, Luo YX, Peng H, Wang XL, Yang ZH, Huang MJ, Kang L, Wang L, Wang JP. Association of perioperative blood pressure with long-term survival in rectal cancer patients. Chin J Cancer. 2016 Apr 11;35:38. doi: 10.1186/s40880-016-0100-8.
Gan TJ, Diemunsch P, Habib AS, Kovac A, Kranke P, Meyer TA, Watcha M, Chung F, Angus S, Apfel CC, Bergese SD, Candiotti KA, Chan MT, Davis PJ, Hooper VD, Lagoo-Deenadayalan S, Myles P, Nezat G, Philip BK, Tramer MR; Society for Ambulatory Anesthesia. Consensus guidelines for the management of postoperative nausea and vomiting. Anesth Analg. 2014 Jan;118(1):85-113. doi: 10.1213/ANE.0000000000000002.
Bain CR, Draxler DF, Taylor R, Wallace S, Gouldthorpe O, Corcoran TB, Myles PS, L Medcalf R, Bozaoglu K. The early in-vivo effects of a single anti-emetic dose of dexamethasone on innate immune cell gene expression and activation in healthy volunteers. Anaesthesia. 2018 Aug;73(8):955-966. doi: 10.1111/anae.14306. Epub 2018 May 28.
Polderman JAW, Farhang-Razi V, van Dieren S, Kranke P, DeVries JH, Hollmann MW, Preckel B, Hermanides J. Adverse side-effects of dexamethasone in surgical patients - an abridged Cochrane systematic review. Anaesthesia. 2019 Jul;74(7):929-939. doi: 10.1111/anae.14610. Epub 2019 Mar 1.
Toner AJ, Ganeshanathan V, Chan MT, Ho KM, Corcoran TB. Safety of Perioperative Glucocorticoids in Elective Noncardiac Surgery: A Systematic Review and Meta-analysis. Anesthesiology. 2017 Feb;126(2):234-248. doi: 10.1097/ALN.0000000000001466.
Asehnoune K, Futier E, Feuillet F, Roquilly A; PACMAN group. PACMAN trial protocol, Perioperative Administration of Corticotherapy on Morbidity and mortality After Non-cardiac major surgery: a randomised, multicentre, double-blind, superiority study. BMJ Open. 2019 Mar 23;9(3):e021262. doi: 10.1136/bmjopen-2017-021262.
Call TR, Pace NL, Thorup DB, Maxfield D, Chortkoff B, Christensen J, Mulvihill SJ. Factors associated with improved survival after resection of pancreatic adenocarcinoma: a multivariable model. Anesthesiology. 2015 Feb;122(2):317-24. doi: 10.1097/ALN.0000000000000489.
Huang WW, Zhu WZ, Mu DL, Ji XQ, Nie XL, Li XY, Wang DX, Ma D. Perioperative Management May Improve Long-term Survival in Patients After Lung Cancer Surgery: A Retrospective Cohort Study. Anesth Analg. 2018 May;126(5):1666-1674. doi: 10.1213/ANE.0000000000002886.
Xu H, Shu SH, Wang D, Chai XQ, Xie YH, Zhou WD. Goal-directed fluid restriction using stroke volume variation and cardiac index during one-lung ventilation: a randomized controlled trial. J Thorac Dis. 2017 Sep;9(9):2992-3004. doi: 10.21037/jtd.2017.08.98.
Dinic VD, Stojanovic MD, Markovic D, Cvetanovic V, Vukovic AZ, Jankovic RJ. Enhanced Recovery in Thoracic Surgery: A Review. Front Med (Lausanne). 2018 Feb 5;5:14. doi: 10.3389/fmed.2018.00014. eCollection 2018.
Khwannimit B, Bhurayanontachai R. Prediction of fluid responsiveness in septic shock patients: comparing stroke volume variation by FloTrac/Vigileo and automated pulse pressure variation. Eur J Anaesthesiol. 2012 Feb;29(2):64-9. doi: 10.1097/EJA.0b013e32834b7d82.
Piccioni F, Bernasconi F, Tramontano GTA, Langer M. A systematic review of pulse pressure variation and stroke volume variation to predict fluid responsiveness during cardiac and thoracic surgery. J Clin Monit Comput. 2017 Aug;31(4):677-684. doi: 10.1007/s10877-016-9898-5. Epub 2016 Jun 15.
Suehiro K, Okutani R. Stroke volume variation as a predictor of fluid responsiveness in patients undergoing one-lung ventilation. J Cardiothorac Vasc Anesth. 2010 Oct;24(5):772-5. doi: 10.1053/j.jvca.2010.03.014. Epub 2010 Jul 17.
Zhang J, Chen CQ, Lei XZ, Feng ZY, Zhu SM. Goal-directed fluid optimization based on stroke volume variation and cardiac index during one-lung ventilation in patients undergoing thoracoscopy lobectomy operations: a pilot study. Clinics (Sao Paulo). 2013 Jul;68(7):1065-70. doi: 10.6061/clinics/2013(07)27.
Loop T. Fast track in thoracic surgery and anaesthesia: update of concepts. Curr Opin Anaesthesiol. 2016 Feb;29(1):20-5. doi: 10.1097/ACO.0000000000000282.
Ely EW, Margolin R, Francis J, May L, Truman B, Dittus R, Speroff T, Gautam S, Bernard GR, Inouye SK. Evaluation of delirium in critically ill patients: validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU). Crit Care Med. 2001 Jul;29(7):1370-9. doi: 10.1097/00003246-200107000-00012.
Konstantinides SV, Torbicki A, Agnelli G, Danchin N, Fitzmaurice D, Galie N, Gibbs JS, Huisman MV, Humbert M, Kucher N, Lang I, Lankeit M, Lekakis J, Maack C, Mayer E, Meneveau N, Perrier A, Pruszczyk P, Rasmussen LH, Schindler TH, Svitil P, Vonk Noordegraaf A, Zamorano JL, Zompatori M; Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC). 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J. 2014 Nov 14;35(43):3033-69, 3069a-3069k. doi: 10.1093/eurheartj/ehu283. Epub 2014 Aug 29. No abstract available.
Detterbeck FC, Boffa DJ, Kim AW, Tanoue LT. The Eighth Edition Lung Cancer Stage Classification. Chest. 2017 Jan;151(1):193-203. doi: 10.1016/j.chest.2016.10.010. Epub 2016 Oct 22.
Kellum JA, Lameire N; KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care. 2013 Feb 4;17(1):204. doi: 10.1186/cc11454.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
2019-234
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.