Nitrous Oxide for Identifying the Intersegmental Plane in Segmentectomy: A Randomized Controlled Trial

NCT ID: NCT04302350

Last Updated: 2023-03-02

Study Results

Results available

Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.

View full results

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

81 participants

Study Classification

INTERVENTIONAL

Study Start Date

2020-01-15

Study Completion Date

2020-07-15

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Lung cancer is currently one of the most common malignant tumors in the world. In recent years, with the popularity of high-resolution CT, more and more early-stage lung cancers have been found. Anatomic pneumonectomy is gradually popular because it can completely remove lung nodules and preserve lung function to the greatest extent. During the surgery, the precise and rapid determination of intersegmental border is one of the key technologies. Improved inflation-deflation method is currently the most widely used method in clinical practice. Previous studies demonstrated that increasing the concentration of nitrous oxide in mixtures of N2O/O2 will lead to a faster rate of collapse. The rapid diffusion properties of N2O would be expected to speed lung collapse and so facilitate surgery. This study was designed to explore three types of inspired gas mixture used during two-lung anesthesia had an effect on the intersegmental border appearance time during pneumonectomy and its feasibility and safety: 75% N2O (O2: N2O = 1: 3), 50% N2O (O2: N2O = 1: 1), 100% oxygen.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

This randomized parallel group trial enrolled lung cancer patients scheduled to receive thoracoscopic anatomic segmentectomy at The First Affiliated Hospital of Nanjing Medical University. When anesthesia induction was completed, intubation was carried out using an appropriate-size double-lumen endobronchial tube (DLT) and the position of the DLT was confirmed with fiberoptic bronchoscopy and adjusted as needed. OLV of the dependent lung with FiO2=1.0 was begun in the lateral position, by clamping the DLT to the nonventilated lung proximally and opening the distal port of the DLT lumen to the atmosphere. Tidal volumes were 5 mL/kg ideal bodyweight (male: height -100, and female: height - 105) without positive end expiratory pressure (PEEP). In order to avoid possible confounding effects of inhalation of volatile anesthetics on oxygenation, all subjects received total intravenous anesthesia.

According to preoperative 3D-CTBA evaluation of bronchial and vascular structure of pulmonary nodules and pulmonary segments, the target segmental bronchus, arteries and intra-segment veins were accurately identi-fied and dissected by ligation or stapler cutting. After that, the anesthesiologist began to make preparations for the lung inflation. The portable nitrous oxide concentration detector (TD600-SH-B-N2O) was installed to detect N2O concentration (vol%), and then adjusted the anesthesia machine to the manual control mode. The flow of the selected gas mixture was set to 8L/min (Group75 set to N2O:O2=6:2, Group50 set to N2O:O2=4:4, Group0 set to O2=8), avoiding the interference of the total gas flow. When the N2O concentration detector reached the predetermined gas concentration, and then the collapsed lung was re-expanded completely with controlled airway pressure under 20 cmH2O (1cm H2O=0.098 kPa) by the anesthesiologist. This procedure took approximately 1 min, and then FiO2=1.0 was performed after the initiation of the OLV.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Pulmonary Nodule, Solitary Pulmonary Nodule, Multiple Lung Cancer

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

SUPPORTIVE_CARE

Blinding Strategy

TRIPLE

Participants Investigators Outcome Assessors

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Group75

According to preoperative 3D-CTBA evaluation of bronchial and vascular structure of pulmonary nodules and pulmonary segments, the target segmental bronchus, arteries and intra-segment veins were accurately identified and dissected by ligation or stapler cutting. After that, the anesthesiologist began to make preparations for the lung inflation. The portable nitrous oxide concentration detector (TD600-SH-B-N2O) was installed to detect N2O concentration (vol%), and then adjusted the anesthesia machine to the manual control mode. The flow of the selected gas mixture was set to 8L/min (Group75 set to N2O:O2=6:2). When the N2O concentration detector reached the predetermined gas concentration, and then the collapsed lung was re-expanded completely with controlled airway pressure under 20 cmH2O (1cm H2O=0.098 kPa) by the anesthesiologist. This procedure took approximately 1 min, and then FiO2=1.0 was performed after the initiation of the OLV.

Group Type EXPERIMENTAL

nitrous oxide

Intervention Type PROCEDURE

During one-lung ventilation with an open chest, the nonventilated lung collapses initially due to elastic recoil, which quickly brings the lung down to its closing capacity. Remaining gas in the lung is then removed by absorption into the pulmonary capillary blood. The rapid diffusion properties of N2O(Blood gas distribution coefficient is 0.47)would be expected to speed lung collapse and so facilitate surgery. The previous study suggested that increasing the concentration of N2O in mixtures of N2O/O2 will lead to a faster rate of collapse. When using nitrous oxide in oxygen during lung ventilation, ongoing oxygen uptake by blood shunting will serve to increase the partial pressure of nitrous oxide in parts of the lung that are still expanded. This will soon result in a partial pressure gradient for nitrous oxide uptake also, with a consequent faster rate of lung collapse than would occur in a patient being ventilated with 100% oxygen.

Group50

According to preoperative 3D-CTBA evaluation of bronchial and vascular structure of pulmonary nodules and pulmonary segments, the target segmental bronchus, arteries and intra-segment veins were accurately identified and dissected by ligation or stapler cutting. After that, the anesthesiologist began to make preparations for the lung inflation. The portable nitrous oxide concentration detector (TD600-SH-B-N2O) was installed to detect N2O concentration (vol%), and then adjusted the anesthesia machine to the manual control mode. The flow of the selected gas mixture was set to 8L/min (Group50 set to N2O:O2=4:4). When the N2O concentration detector reached the predetermined gas concentration, and then the collapsed lung was re-expanded completely with controlled airway pressure under 20 cmH2O (1cm H2O=0.098 kPa) by the anesthesiologist. This procedure took approximately 1 min, and then FiO2=1.0 was performed after the initiation of the OLV.

Group Type EXPERIMENTAL

nitrous oxide

Intervention Type PROCEDURE

During one-lung ventilation with an open chest, the nonventilated lung collapses initially due to elastic recoil, which quickly brings the lung down to its closing capacity. Remaining gas in the lung is then removed by absorption into the pulmonary capillary blood. The rapid diffusion properties of N2O(Blood gas distribution coefficient is 0.47)would be expected to speed lung collapse and so facilitate surgery. The previous study suggested that increasing the concentration of N2O in mixtures of N2O/O2 will lead to a faster rate of collapse. When using nitrous oxide in oxygen during lung ventilation, ongoing oxygen uptake by blood shunting will serve to increase the partial pressure of nitrous oxide in parts of the lung that are still expanded. This will soon result in a partial pressure gradient for nitrous oxide uptake also, with a consequent faster rate of lung collapse than would occur in a patient being ventilated with 100% oxygen.

Group0

According to preoperative 3D-CTBA evaluation of bronchial and vascular structure of pulmonary nodules and pulmonary segments, the target segmental bronchus, arteries and intra-segment veins were accurately identified and dissected by ligation or stapler cutting. After that, the anesthesiologist began to make preparations for the lung inflation. The portable nitrous oxide concentration detector (TD600-SH-B-N2O) was installed to detect N2O concentration (vol%), and then adjusted the anesthesia machine to the manual control mode. The flow of the selected gas mixture was set to 8L/min (Group0 set to O2=8). When the N2O concentration detector reached the predetermined gas concentration, and then the collapsed lung was re-expanded completely with controlled airway pressure under 20 cmH2O (1cm H2O=0.098 kPa) by the anesthesiologist. This procedure took approximately 1 min, and then FiO2=1.0 was performed after the initiation of the OLV.

Group Type ACTIVE_COMPARATOR

nitrous oxide

Intervention Type PROCEDURE

During one-lung ventilation with an open chest, the nonventilated lung collapses initially due to elastic recoil, which quickly brings the lung down to its closing capacity. Remaining gas in the lung is then removed by absorption into the pulmonary capillary blood. The rapid diffusion properties of N2O(Blood gas distribution coefficient is 0.47)would be expected to speed lung collapse and so facilitate surgery. The previous study suggested that increasing the concentration of N2O in mixtures of N2O/O2 will lead to a faster rate of collapse. When using nitrous oxide in oxygen during lung ventilation, ongoing oxygen uptake by blood shunting will serve to increase the partial pressure of nitrous oxide in parts of the lung that are still expanded. This will soon result in a partial pressure gradient for nitrous oxide uptake also, with a consequent faster rate of lung collapse than would occur in a patient being ventilated with 100% oxygen.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

nitrous oxide

During one-lung ventilation with an open chest, the nonventilated lung collapses initially due to elastic recoil, which quickly brings the lung down to its closing capacity. Remaining gas in the lung is then removed by absorption into the pulmonary capillary blood. The rapid diffusion properties of N2O(Blood gas distribution coefficient is 0.47)would be expected to speed lung collapse and so facilitate surgery. The previous study suggested that increasing the concentration of N2O in mixtures of N2O/O2 will lead to a faster rate of collapse. When using nitrous oxide in oxygen during lung ventilation, ongoing oxygen uptake by blood shunting will serve to increase the partial pressure of nitrous oxide in parts of the lung that are still expanded. This will soon result in a partial pressure gradient for nitrous oxide uptake also, with a consequent faster rate of lung collapse than would occur in a patient being ventilated with 100% oxygen.

Intervention Type PROCEDURE

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

oxygen

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

1、20 to 70 years of age; 2、early stage lung cancer(diameter of tumor consolidation ≤ 2cm, none evidence of lymph node or distant metas-tasis, c-stage ⅠA1 or ⅠA2)(active limited resection); 3、 patients at high risk due to poor general condition who cannot undergo lobectomy (c-stage IA1 to IA3) (passive limited resection)

Exclusion Criteria

1. a history of severe asthma or pneumothorax;
2. pulmonary bullae on chest CT;
3. patient refusal
Minimum Eligible Age

20 Years

Maximum Eligible Age

70 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

The First Affiliated Hospital with Nanjing Medical University

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Shijiang Liu, MD

doctor of The department of anaesthesiology and perioperate

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

cunming liu, Master

Role: STUDY_CHAIR

The First Affiliated Hospital with Nanjing Medical University

quan zhu, Doctorate

Role: STUDY_DIRECTOR

The First Affiliated Hospital with Nanjing Medical University

shijiang liu, Attending physician

Role: STUDY_DIRECTOR

The First Affiliated Hospital with Nanjing Medical University

wenjing yang, Master

Role: PRINCIPAL_INVESTIGATOR

The First Affiliated Hospital with Nanjing Medical University

zicheng liu, Doctorate

Role: PRINCIPAL_INVESTIGATOR

The First Affiliated Hospital with Nanjing Medical University

Wei Wen, Master

Role: PRINCIPAL_INVESTIGATOR

The First Affiliated Hospital with Nanjing Medical University

Jun Wang, Master

Role: PRINCIPAL_INVESTIGATOR

The First Affiliated Hospital with Nanjing Medical University

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

The First Affiliated Hospital of Nanjing Medical University

Nanjing, Jiangsu, China

Site Status

The First Affiliated Hospital with Nanjing Medical University

Nanjing, Jiangsu, China

Site Status

Countries

Review the countries where the study has at least one active or historical site.

China

Provided Documents

Download supplemental materials such as informed consent forms, study protocols, or participant manuals.

Document Type: Study Protocol and Statistical Analysis Plan

View Document

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

2019-SR-449

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.