HD-tDCs to Improve Upper Extremity Function in Patients With Acute Middle Cerebral Artery Stroke

NCT ID: NCT04000269

Last Updated: 2022-03-31

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

WITHDRAWN

Clinical Phase

NA

Study Classification

INTERVENTIONAL

Study Start Date

2020-07-05

Study Completion Date

2022-09-05

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

To determine if using targeted high definition transcranial direct current stimulation can improve upper extremity motor function in patients with subacute middle cerebral artery (MCA) stroke.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Current research suggests there may be potential benefit using high definition transcranial direct current stimulation in patients with upper extremity hemiparesis secondary to an ischemic stroke. The intervention has effects on the damaged neurons within the person's brain after stroke possibly amplifying the body's own healing process. These data are compelling but not always statistically significant, which could be due to several reasons. One is the lack of a definitive protocol involving timing of the intervention relative to therapy, lead placement, an unclear dose-response relationship, and variable conductance of tissue and skull thickness. Hummel et al (2008) suggested that stimulation during or before intensive therapy yielded improved motor function or reaction time than when no therapy was given around the stimulation. Several other review articles and studies suggest using both high definition tDCS, which increases the focality of the current, and/or using neurotargeting software that uses the patient's own CT/MRI in the computation of the electrical montage can create a more personalized tDCS regimen.7,11,12 This study plans to do both. The Soterix MxN neuromodulation system has been used in multiple studies and has a targeting system that would help ensure both ideal current, more focal stimulation and optimal lead placements is essential as according to Datta et al (2011). Lesions within the brain may alter the flow of current through that area. The software system, HD-Targets, will be used that takes the patient's own MRI to account for variabilities in skull thickness, lesion size/location/composition, fluid density, and cerebrospinal fluid presence. These variabilities are used in the computer algorithm that simulates current flow through that specific participant's brain to get to the desired target area with the least amount of current and decreased stimulation of undesired areas. The investigators will examine these patients before and after treatment and compare the two groups, treatment group and sham group, after they receive 10 sessions of 20minutes along with their regular course of physical, occupational, or speech therapy over the course of their inpatient rehab stay.

Subjects will be given high definition transcranial direct current stimulation (tDCS) via a Soterix MxN HD-tDCS stimulator. This device is for investigational use only at this time and is not FDA approved. However, it has been used in several multicenter and randomized control trials that are detailed below in Appendix 1. The patient's MRi will be sent out to Soterix where they will manually input the variations in skull thickness, fluid density, lesion size, cerebrospinal fluid, and gray/white matter variabilities. They will then run the algorithm with HD-Targets, sophisticated current simulating software, to obtain optimal electrode placement to target the primary motor cortex (M1 area), the region of the brain that is responsible for movement, of each individual patient. Another issue with tDCs is maintaining optimal connections between the patient's scalp and the electrodes. Sotetrix HD-tDCs uses SmartScan™ to assure proper lead contact with initial set-up to adjust electrodes and head-gear for optimal fit. During stimulation, SmartScan™ provides a constant indication of electrode quality and can be monitored during adjustments to assure continuous lead contact.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Middle Cerebral Artery Stroke

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Pilot prospective double blinded randomized controlled trial
Primary Study Purpose

TREATMENT

Blinding Strategy

DOUBLE

Participants Caregivers

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Treatment Group

Treatment with 'Soterix MxN Neuromodulation device (high definition transcranial direct current stimulator) using HD-Targets for optimal neural targeting will be provided to participants and will include 20 minutes of stimulation coupled with conventional OT treatment during and after the intervention. There will be a total of 10 sessions over about a 2 week period.

Group Type EXPERIMENTAL

Soterix MxN Neuromodulation device

Intervention Type DEVICE

Up to 2 mA stimulation to primary motor cortex for 10 sessions at 20min per session

Sham group

Sham stimulation will consist of using the devices auto-sham feature. The exact same setup/device will be used during both groups. This is considered a control for the experiment. Both groups will receive similar physical occupational and speech therapy

Group Type SHAM_COMPARATOR

Sham Stimulation

Intervention Type DEVICE

Uses slight stimulation initially then turns of and provides no stimulation after a few seconds.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Soterix MxN Neuromodulation device

Up to 2 mA stimulation to primary motor cortex for 10 sessions at 20min per session

Intervention Type DEVICE

Sham Stimulation

Uses slight stimulation initially then turns of and provides no stimulation after a few seconds.

Intervention Type DEVICE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

1. Adults 18-90 years old
2. Diagnosed with middle cerebral artery ischemic stroke
3. Upper extremity movement deficits
4. Cardiorespiratory function is stable
5. Admitted to acute inpatient rehabilitation
6. Intact corticospinal tract

Exclusion Criteria

1. Previous stroke
2. Pre-stoke weakness or disability in the paretic arm
3. Severe neglect
4. Acute exacerbation of heart failure or COPD
5. Severe aphasia
6. Decisional Impairment
7. Pregnant or nursing women
8. Prisoner
9. Skin disorder or wound of scalp
10. Seizure disorder
Minimum Eligible Age

18 Years

Maximum Eligible Age

90 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Milton S. Hershey Medical Center

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

William A Pomilla, MD

Role: PRINCIPAL_INVESTIGATOR

Assistant Professor

References

Explore related publications, articles, or registry entries linked to this study.

Di Pino G, Pellegrino G, Assenza G, Capone F, Ferreri F, Formica D, Ranieri F, Tombini M, Ziemann U, Rothwell JC, Di Lazzaro V. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat Rev Neurol. 2014 Oct;10(10):597-608. doi: 10.1038/nrneurol.2014.162. Epub 2014 Sep 9.

Reference Type BACKGROUND
PMID: 25201238 (View on PubMed)

Poreisz C, Boros K, Antal A, Paulus W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull. 2007 May 30;72(4-6):208-14. doi: 10.1016/j.brainresbull.2007.01.004. Epub 2007 Jan 24.

Reference Type BACKGROUND
PMID: 17452283 (View on PubMed)

Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2011 Feb;17(1):37-53. doi: 10.1177/1073858410386614.

Reference Type BACKGROUND
PMID: 21343407 (View on PubMed)

Nitsche MA, Fricke K, Henschke U, Schlitterlau A, Liebetanz D, Lang N, Henning S, Tergau F, Paulus W. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol. 2003 Nov 15;553(Pt 1):293-301. doi: 10.1113/jphysiol.2003.049916. Epub 2003 Aug 29.

Reference Type BACKGROUND
PMID: 12949224 (View on PubMed)

Lefaucheur JP, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, Cotelli M, De Ridder D, Ferrucci R, Langguth B, Marangolo P, Mylius V, Nitsche MA, Padberg F, Palm U, Poulet E, Priori A, Rossi S, Schecklmann M, Vanneste S, Ziemann U, Garcia-Larrea L, Paulus W. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 2017 Jan;128(1):56-92. doi: 10.1016/j.clinph.2016.10.087. Epub 2016 Oct 29.

Reference Type BACKGROUND
PMID: 27866120 (View on PubMed)

Elsner B, Kwakkel G, Kugler J, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving capacity in activities and arm function after stroke: a network meta-analysis of randomised controlled trials. J Neuroeng Rehabil. 2017 Sep 13;14(1):95. doi: 10.1186/s12984-017-0301-7.

Reference Type BACKGROUND
PMID: 28903772 (View on PubMed)

Giordano J, Bikson M, Kappenman ES, Clark VP, Coslett HB, Hamblin MR, Hamilton R, Jankord R, Kozumbo WJ, McKinley RA, Nitsche MA, Reilly JP, Richardson J, Wurzman R, Calabrese E. Mechanisms and Effects of Transcranial Direct Current Stimulation. Dose Response. 2017 Feb 9;15(1):1559325816685467. doi: 10.1177/1559325816685467. eCollection 2017 Jan-Mar.

Reference Type BACKGROUND
PMID: 28210202 (View on PubMed)

Rabadi MH, Aston CE. Effect of Transcranial Direct Current Stimulation on Severely Affected Arm-Hand Motor Function in Patients After an Acute Ischemic Stroke: A Pilot Randomized Control Trial. Am J Phys Med Rehabil. 2017 Oct;96(10 Suppl 1):S178-S184. doi: 10.1097/PHM.0000000000000823.

Reference Type BACKGROUND
PMID: 28837443 (View on PubMed)

Kang N, Summers JJ, Cauraugh JH. Transcranial direct current stimulation facilitates motor learning post-stroke: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2016 Apr;87(4):345-55. doi: 10.1136/jnnp-2015-311242. Epub 2015 Aug 28.

Reference Type BACKGROUND
PMID: 26319437 (View on PubMed)

Hummel FC, Celnik P, Pascual-Leone A, Fregni F, Byblow WD, Buetefisch CM, Rothwell J, Cohen LG, Gerloff C. Controversy: Noninvasive and invasive cortical stimulation show efficacy in treating stroke patients. Brain Stimul. 2008 Oct;1(4):370-82. doi: 10.1016/j.brs.2008.09.003. Epub 2008 Oct 9.

Reference Type BACKGROUND
PMID: 20633395 (View on PubMed)

Brunoni AR, Nitsche MA, Bolognini N, Bikson M, Wagner T, Merabet L, Edwards DJ, Valero-Cabre A, Rotenberg A, Pascual-Leone A, Ferrucci R, Priori A, Boggio PS, Fregni F. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul. 2012 Jul;5(3):175-195. doi: 10.1016/j.brs.2011.03.002. Epub 2011 Apr 1.

Reference Type BACKGROUND
PMID: 22037126 (View on PubMed)

Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, Cohen LG, Fregni F, Herrmann CS, Kappenman ES, Knotkova H, Liebetanz D, Miniussi C, Miranda PC, Paulus W, Priori A, Reato D, Stagg C, Wenderoth N, Nitsche MA. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 2016 Feb;127(2):1031-1048. doi: 10.1016/j.clinph.2015.11.012. Epub 2015 Nov 22.

Reference Type BACKGROUND
PMID: 26652115 (View on PubMed)

Nitsche MA, Grundey J, Liebetanz D, Lang N, Tergau F, Paulus W. Catecholaminergic consolidation of motor cortical neuroplasticity in humans. Cereb Cortex. 2004 Nov;14(11):1240-5. doi: 10.1093/cercor/bhh085. Epub 2004 May 13.

Reference Type BACKGROUND
PMID: 15142961 (View on PubMed)

Monte-Silva K, Kuo MF, Thirugnanasambandam N, Liebetanz D, Paulus W, Nitsche MA. Dose-dependent inverted U-shaped effect of dopamine (D2-like) receptor activation on focal and nonfocal plasticity in humans. J Neurosci. 2009 May 13;29(19):6124-31. doi: 10.1523/JNEUROSCI.0728-09.2009.

Reference Type BACKGROUND
PMID: 19439590 (View on PubMed)

Kuo MF, Unger M, Liebetanz D, Lang N, Tergau F, Paulus W, Nitsche MA. Limited impact of homeostatic plasticity on motor learning in humans. Neuropsychologia. 2008;46(8):2122-8. doi: 10.1016/j.neuropsychologia.2008.02.023. Epub 2008 Feb 29.

Reference Type BACKGROUND
PMID: 18394661 (View on PubMed)

Nitsche MA, Doemkes S, Karakose T, Antal A, Liebetanz D, Lang N, Tergau F, Paulus W. Shaping the effects of transcranial direct current stimulation of the human motor cortex. J Neurophysiol. 2007 Apr;97(4):3109-17. doi: 10.1152/jn.01312.2006. Epub 2007 Jan 24.

Reference Type BACKGROUND
PMID: 17251360 (View on PubMed)

Kuo MF, Paulus W, Nitsche MA. Boosting focally-induced brain plasticity by dopamine. Cereb Cortex. 2008 Mar;18(3):648-51. doi: 10.1093/cercor/bhm098. Epub 2007 Jun 24.

Reference Type BACKGROUND
PMID: 17591596 (View on PubMed)

Fregni F, Thome-Souza S, Nitsche MA, Freedman SD, Valente KD, Pascual-Leone A. A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy. Epilepsia. 2006 Feb;47(2):335-42. doi: 10.1111/j.1528-1167.2006.00426.x.

Reference Type BACKGROUND
PMID: 16499758 (View on PubMed)

Ward NS, Newton JM, Swayne OB, Lee L, Thompson AJ, Greenwood RJ, Rothwell JC, Frackowiak RS. Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain. 2006 Mar;129(Pt 3):809-19. doi: 10.1093/brain/awl002. Epub 2006 Jan 18.

Reference Type BACKGROUND
PMID: 16421171 (View on PubMed)

Santisteban L, Teremetz M, Bleton JP, Baron JC, Maier MA, Lindberg PG. Upper Limb Outcome Measures Used in Stroke Rehabilitation Studies: A Systematic Literature Review. PLoS One. 2016 May 6;11(5):e0154792. doi: 10.1371/journal.pone.0154792. eCollection 2016.

Reference Type BACKGROUND
PMID: 27152853 (View on PubMed)

Lin JH, Hsueh IP, Sheu CF, Hsieh CL. Psychometric properties of the sensory scale of the Fugl-Meyer Assessment in stroke patients. Clin Rehabil. 2004 Jun;18(4):391-7. doi: 10.1191/0269215504cr737oa.

Reference Type BACKGROUND
PMID: 15180122 (View on PubMed)

Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Paulus W, Hummel F, Boggio PS, Fregni F, Pascual-Leone A. Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 2008 Jul;1(3):206-23. doi: 10.1016/j.brs.2008.06.004. Epub 2008 Jul 1.

Reference Type BACKGROUND
PMID: 20633386 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

None at this time

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.