Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
ACTIVE_NOT_RECRUITING
NA
660 participants
INTERVENTIONAL
2019-09-15
2030-05-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Imaging Speech in Neurotypical Adults and Individuals With Cerebellar Stroke
NCT06458153
Using Real-time fMRI Neurofeedback and Motor Imagery to Enhance Motor Timing and Precision in Cerebellar Ataxia
NCT05436262
Brain Activation During Simple Vocal Behaviors
NCT00071734
Use of Real-Time Functional Magnetic Resonance Imaging Neurofeedback to Improve Motor Function in Cerebellar Ataxia
NCT05436249
Enhanced Recovery After Surgery Using TMS on Cerebellar Language Area for Brain Tumor Patients
NCT03974659
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Speech provides an important opportunity to examine how well current theories of cerebellar function generalize to a novel effector (vocal tract) and sensory (auditory) domain. Its purpose for communication imposes exacting spectro-temporal constraints not seen in other motor domains. Furthermore, the distinctive balance of feedback and feedforward control in speech allows us to examine changes in both control types subsequent to cerebellar damage. Critically, this is the first work examining the link between theoretically motivated control deficits in CA patients and the speech symptoms associated with ataxic dysarthria, as well as their neural correlates.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
PARALLEL
BASIC_SCIENCE
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Patients with cerebellar ataxia (CA)
Behavioral testing including various speaking tasks Magnetic resonance imaging (MRI)
MRI
Brain MRI will be performed (no contrast) to correlate brain anatomy/function with behavioral testing.
Speech-motor behavioral testing
Language/speaking tasks will be performed during which participants are asked to speak in response to audio/video cues; participants' responses will be recorded. For patients with cerebellar ataxia, additional diagnostic surveys may be completed.
Matched controls
Behavioral testing including various speaking tasks Magnetic resonance imaging (MRI)
MRI
Brain MRI will be performed (no contrast) to correlate brain anatomy/function with behavioral testing.
Speech-motor behavioral testing
Language/speaking tasks will be performed during which participants are asked to speak in response to audio/video cues; participants' responses will be recorded. For patients with cerebellar ataxia, additional diagnostic surveys may be completed.
Additional healthy volunteers
Behavioral testing including various speaking tasks Magnetic resonance imaging (MRI) Transcranial magnetic stimulation (TMS)
MRI
Brain MRI will be performed (no contrast) to correlate brain anatomy/function with behavioral testing.
TMS
Repetitive TMS will be applied to transiently disrupt cerebellar speech pathways.
Speech-motor behavioral testing
Language/speaking tasks will be performed during which participants are asked to speak in response to audio/video cues; participants' responses will be recorded. For patients with cerebellar ataxia, additional diagnostic surveys may be completed.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
MRI
Brain MRI will be performed (no contrast) to correlate brain anatomy/function with behavioral testing.
TMS
Repetitive TMS will be applied to transiently disrupt cerebellar speech pathways.
Speech-motor behavioral testing
Language/speaking tasks will be performed during which participants are asked to speak in response to audio/video cues; participants' responses will be recorded. For patients with cerebellar ataxia, additional diagnostic surveys may be completed.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Healthy volunteers with no known history of physical or neurological abnormalities AND normal speech, hearing, and reading abilities
* For some studies, primary language of American English may be required
Exclusion Criteria
* Neurological impairment or psychiatric illness apart from those arising from cerebellar damage
* Any contraindication to participating in an MRI study including the following: implanted metallic parts or implanted electronic devices, including pacemakers, defibrillators, stimulators, or implant medication pump, or nonremovable piercings; aneurysm clip or other metal in the head (except mouth); claustrophobia precluding MRI
* Any contraindications to participating in a TMS study including the following: epilepsy, use of certain medications, heart disease, and pregnancy; scalp wounds or infections; any other contraindication discovered during screening procedures
* Any contraindication to participating in an MRI study including the following: implanted metallic parts or implanted electronic devices, including pacemakers, defibrillators, or implant medication pump, or nonremovable piercings; claustrophobia precluding MRI
* Pregnant or trying to become pregnant (may still be eligible for behavioral studies only)
* History of alcohol abuse, illicit drug use or drug abuse or significant mental illness
* Hypertensive or hypotensive condition
* Any condition that would prevent the subject from giving voluntary informed consent
* Enrolled or plans to enroll in an interventional trial during this study
* Ongoing seizures that are not well controlled despite medication
* Use of hearing aid or other device to improve hearing
18 Years
75 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of California, Berkeley
OTHER
National Institute on Deafness and Other Communication Disorders (NIDCD)
NIH
University of Wisconsin, Madison
OTHER
University of California, San Francisco
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
John F. Houde, Ph.D.
Role: PRINCIPAL_INVESTIGATOR
University of California, San Francisco
Srikantan S. Nagarajan, Ph.D.
Role: PRINCIPAL_INVESTIGATOR
University of California, San Francisco
Richard Ivry, Ph.D.
Role: PRINCIPAL_INVESTIGATOR
University of California, Berkeley
Ben Parrell, Ph.D.
Role: PRINCIPAL_INVESTIGATOR
University of Wisconsin, Madison
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University of California, Berkeley
Berkeley, California, United States
University of California, San Francisco
San Francisco, California, United States
University of Wisconsin--Madison
Madison, Wisconsin, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Chang EF, Niziolek CA, Knight RT, Nagarajan SS, Houde JF. Human cortical sensorimotor network underlying feedback control of vocal pitch. Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2653-8. doi: 10.1073/pnas.1216827110. Epub 2013 Jan 23.
Hinkley LB, Marco EJ, Brown EG, Bukshpun P, Gold J, Hill S, Findlay AM, Jeremy RJ, Wakahiro ML, Barkovich AJ, Mukherjee P, Sherr EH, Nagarajan SS. The Contribution of the Corpus Callosum to Language Lateralization. J Neurosci. 2016 Apr 20;36(16):4522-33. doi: 10.1523/JNEUROSCI.3850-14.2016.
Kort NS, Cuesta P, Houde JF, Nagarajan SS. Bihemispheric network dynamics coordinating vocal feedback control. Hum Brain Mapp. 2016 Apr;37(4):1474-85. doi: 10.1002/hbm.23114. Epub 2016 Feb 25.
Ranasinghe KG, Gill JS, Kothare H, Beagle AJ, Mizuiri D, Honma SM, Gorno-Tempini ML, Miller BL, Vossel KA, Nagarajan SS, Houde JF. Abnormal vocal behavior predicts executive and memory deficits in Alzheimer's disease. Neurobiol Aging. 2017 Apr;52:71-80. doi: 10.1016/j.neurobiolaging.2016.12.020. Epub 2017 Jan 3.
Moberget T, Gullesen EH, Andersson S, Ivry RB, Endestad T. Generalized role for the cerebellum in encoding internal models: evidence from semantic processing. J Neurosci. 2014 Feb 19;34(8):2871-8. doi: 10.1523/JNEUROSCI.2264-13.2014.
Sokolov AA, Miall RC, Ivry RB. The Cerebellum: Adaptive Prediction for Movement and Cognition. Trends Cogn Sci. 2017 May;21(5):313-332. doi: 10.1016/j.tics.2017.02.005. Epub 2017 Apr 3.
Koch G, Oliveri M, Torriero S, Salerno S, Lo Gerfo E, Caltagirone C. Repetitive TMS of cerebellum interferes with millisecond time processing. Exp Brain Res. 2007 May;179(2):291-9. doi: 10.1007/s00221-006-0791-1. Epub 2006 Dec 5.
Jenkinson N, Miall RC. Disruption of saccadic adaptation with repetitive transcranial magnetic stimulation of the posterior cerebellum in humans. Cerebellum. 2010 Dec;9(4):548-55. doi: 10.1007/s12311-010-0193-6.
Parrell B, Agnew Z, Nagarajan S, Houde J, Ivry RB. Impaired Feedforward Control and Enhanced Feedback Control of Speech in Patients with Cerebellar Degeneration. J Neurosci. 2017 Sep 20;37(38):9249-9258. doi: 10.1523/JNEUROSCI.3363-16.2017. Epub 2017 Aug 23.
Parrell, B., Agnew, Z., Houde, J., Nagarajan, S., & Ivry, R. (2016) Individuals with cerebellar degeneration correct for within-category variation of vowels even in the absence of auditory feedback. Talk presented at Society for Neuroscience 2016, San Diego, CA, November 2016.
Parrell, B. (2017). Evidence for reward learning in speech production. Poster presented at the 7th International Conference on Speech Motor Control, Groningen, the Netherlands, July 2017.
Rossi S, Hallett M, Rossini PM, Pascual-Leone A; Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009 Dec;120(12):2008-2039. doi: 10.1016/j.clinph.2009.08.016. Epub 2009 Oct 14.
Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005 Jan 20;45(2):201-6. doi: 10.1016/j.neuron.2004.12.033.
Oberman L, Edwards D, Eldaief M, Pascual-Leone A. Safety of theta burst transcranial magnetic stimulation: a systematic review of the literature. J Clin Neurophysiol. 2011 Feb;28(1):67-74. doi: 10.1097/WNP.0b013e318205135f.
Tarapore PE, Picht T, Bulubas L, Shin Y, Kulchytska N, Meyer B, Berger MS, Nagarajan SS, Krieg SM. Safety and tolerability of navigated TMS for preoperative mapping in neurosurgical patients. Clin Neurophysiol. 2016 Mar;127(3):1895-900. doi: 10.1016/j.clinph.2015.11.042. Epub 2015 Dec 11.
Tarapore PE, Picht T, Bulubas L, Shin Y, Kulchytska N, Meyer B, Nagarajan SS, Krieg SM. Safety and tolerability of navigated TMS in healthy volunteers. Clin Neurophysiol. 2016 Mar;127(3):1916-8. doi: 10.1016/j.clinph.2015.11.043. Epub 2015 Dec 11. No abstract available.
Wassermann EM. Side effects of repetitive transcranial magnetic stimulation. Depress Anxiety. 2000;12(3):124-9. doi: 10.1002/1520-6394(2000)12:33.0.CO;2-E.
Tarapore PE, Findlay AM, Honma SM, Mizuiri D, Houde JF, Berger MS, Nagarajan SS. Language mapping with navigated repetitive TMS: proof of technique and validation. Neuroimage. 2013 Nov 15;82:260-72. doi: 10.1016/j.neuroimage.2013.05.018. Epub 2013 May 20.
Tarapore PE, Tate MC, Findlay AM, Honma SM, Mizuiri D, Berger MS, Nagarajan SS. Preoperative multimodal motor mapping: a comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J Neurosurg. 2012 Aug;117(2):354-62. doi: 10.3171/2012.5.JNS112124. Epub 2012 Jun 15.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
19-27146
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.