Correcting Residual Errors With Spectral, Ultrasound, Traditional Speech Therapy
NCT ID: NCT03737318
Last Updated: 2026-01-05
Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
108 participants
INTERVENTIONAL
2019-03-01
2024-08-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
The overall objective of this proposal is to conduct clinical research that will guide the evidence-based management of RSE while also providing novel insights into the sensorimotor underpinnings of speech. The central hypothesis is that biofeedback will yield greater gains in speech accuracy than traditional treatment, and that individual deficit profiles will predict relative response to visual-acoustic vs ultrasound biofeedback. This study will enroll n = 118 children who misarticulate the /r/ sound, the most common type of RSE. This first component of the study will evaluate the efficacy of biofeedback relative to traditional treatment in a well-powered randomized controlled trial. Ultrasound and visual-acoustic biofeedback, which have similar evidence bases, will be represented equally.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Delineation of Sensorimotor Subtypes Underlying Residual Speech Errors
NCT03736213
Comparing Traditional and Biofeedback Telepractice Treatment for Residual Speech Errors
NCT04625062
Intensive Speech Motor Chaining Treatment for Residual Speech Sound Disorders
NCT05929859
Generalization With AI Navigation Using StaRt
NCT06884943
AI-Assisted Treatment for Residual Speech Sound Disorders
NCT05988515
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
SINGLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Group 1
Traditional articulation treatment
Traditional articulation treatment
Traditional articulation treatment involves providing auditory models and verbal descriptions of correct articulator placement, then cueing repetitive motor practice. Images and diagrams of the vocal tract will be used as visual aids; however, no real-time visual display of articulatory or acoustic information will be made available.
Group 2
Biofeedback--visual-acoustic
Biofeedback--visual-acoustic
In visual-acoustic biofeedback treatment, the elements of traditional treatment (auditory models and verbal descriptions of articulator placement) are enhanced with a dynamic display of the speech signal in the form of the real-time LPC (Linear Predictive Coding) spectrum. Because correct vs incorrect productions of /r/ contrast acoustically in the frequency of the third formant (F3), participants will be cued to make their real-time LPC spectrum match a visual target characterized by a low F3 frequency. They will be encouraged to attend to the visual display while adjusting the placement of their articulators and observing how those adjustments impact F3.
Traditional articulation treatment
Traditional articulation treatment involves providing auditory models and verbal descriptions of correct articulator placement, then cueing repetitive motor practice. Images and diagrams of the vocal tract will be used as visual aids; however, no real-time visual display of articulatory or acoustic information will be made available.
Group 3
Biofeedback-ultrasound
Biofeedback-ultrasound
In ultrasound biofeedback, the elements of traditional treatment (auditory models and verbal descriptions of articulator placement) are enhanced with a real-time ultrasound display of the shape and movements of the tongue. One or two target tongue shapes will be selected for each participant, and a trace of the selected target will be superimposed over the ultrasound screen. Participants will be cued to reshape the tongue to match this target during /r/ production.
Traditional articulation treatment
Traditional articulation treatment involves providing auditory models and verbal descriptions of correct articulator placement, then cueing repetitive motor practice. Images and diagrams of the vocal tract will be used as visual aids; however, no real-time visual display of articulatory or acoustic information will be made available.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Biofeedback-ultrasound
In ultrasound biofeedback, the elements of traditional treatment (auditory models and verbal descriptions of articulator placement) are enhanced with a real-time ultrasound display of the shape and movements of the tongue. One or two target tongue shapes will be selected for each participant, and a trace of the selected target will be superimposed over the ultrasound screen. Participants will be cued to reshape the tongue to match this target during /r/ production.
Biofeedback--visual-acoustic
In visual-acoustic biofeedback treatment, the elements of traditional treatment (auditory models and verbal descriptions of articulator placement) are enhanced with a dynamic display of the speech signal in the form of the real-time LPC (Linear Predictive Coding) spectrum. Because correct vs incorrect productions of /r/ contrast acoustically in the frequency of the third formant (F3), participants will be cued to make their real-time LPC spectrum match a visual target characterized by a low F3 frequency. They will be encouraged to attend to the visual display while adjusting the placement of their articulators and observing how those adjustments impact F3.
Traditional articulation treatment
Traditional articulation treatment involves providing auditory models and verbal descriptions of correct articulator placement, then cueing repetitive motor practice. Images and diagrams of the vocal tract will be used as visual aids; however, no real-time visual display of articulatory or acoustic information will be made available.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Must speak English as the dominant language (i.e., must have begun learning English by age 2, per parent report).
* Must speak a rhotic dialect of English.
* Must pass a pure-tone hearing screening at 20 decibels Hearing Level (HL).
* Must pass a brief examination of oral structure and function.
* Must exhibit less than thirty percent accuracy, based on trained listener ratings, on a probe list eliciting /r/ in various phonetic contexts at the word level.
Exclusion Criteria
* Must not receive a standard score below 80 on the Core Language Index of the Clinical Evaluation of Language Fundamentals-5 (CELF-5).
* Must not exhibit voice or fluency disorder of a severity judged likely to interfere with the ability to participate in study activities.
* Must not have an existing diagnosis of developmental disability or major neurobehavioral syndrome such as cerebral palsy, Down Syndrome, or Autism Spectrum Disorder, or major neural disorder (e.g., epilepsy, agenesis of the corpus callosum) or insult (e.g., traumatic brain injury, stroke, or tumor resection).
* Must not show clinically significant signs of apraxia of speech or dysarthria.
9 Years
15 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Syracuse University
OTHER
Montclair State University
OTHER
National Institute on Deafness and Other Communication Disorders (NIDCD)
NIH
New York University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Montclair State University
Bloomfield, New Jersey, United States
Syracuse University
Syracuse, New York, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Hitchcock ER, Byun TM. Enhancing generalisation in biofeedback intervention using the challenge point framework: a case study. Clin Linguist Phon. 2015 Jan;29(1):59-75. doi: 10.3109/02699206.2014.956232. Epub 2014 Sep 12.
Hitchcock ER, Harel D, Byun TM. Social, Emotional, and Academic Impact of Residual Speech Errors in School-Aged Children: A Survey Study. Semin Speech Lang. 2015 Nov;36(4):283-94. doi: 10.1055/s-0035-1562911. Epub 2015 Oct 12.
Preston JL, McCabe P, Tiede M, Whalen DH. Tongue shapes for rhotics in school-age children with and without residual speech errors. Clin Linguist Phon. 2019;33(4):334-348. doi: 10.1080/02699206.2018.1517190. Epub 2018 Sep 10.
Preston JL, McAllister T, Phillips E, Boyce S, Tiede M, Kim JS, Whalen DH. Treatment for Residual Rhotic Errors With High- and Low-Frequency Ultrasound Visual Feedback: A Single-Case Experimental Design. J Speech Lang Hear Res. 2018 Aug 8;61(8):1875-1892. doi: 10.1044/2018_JSLHR-S-17-0441.
Dugan SH, Silbert N, McAllister T, Preston JL, Sotto C, Boyce SE. Modelling category goodness judgments in children with residual sound errors. Clin Linguist Phon. 2019;33(4):295-315. doi: 10.1080/02699206.2018.1477834. Epub 2018 May 24.
Preston JL, Holliman-Lopez G, Leece MC. Do Participants Report Any Undesired Effects in Ultrasound Speech Therapy? Am J Speech Lang Pathol. 2018 May 3;27(2):813-818. doi: 10.1044/2017_AJSLP-17-0121.
Preston JL, McAllister Byun T, Boyce SE, Hamilton S, Tiede M, Phillips E, Rivera-Campos A, Whalen DH. Ultrasound Images of the Tongue: A Tutorial for Assessment and Remediation of Speech Sound Errors. J Vis Exp. 2017 Jan 3;(119):55123. doi: 10.3791/55123.
Preston JL, Leece MC, Maas E. Motor-based treatment with and without ultrasound feedback for residual speech-sound errors. Int J Lang Commun Disord. 2017 Jan;52(1):80-94. doi: 10.1111/1460-6984.12259. Epub 2016 Jun 14.
Campbell H, Harel D, Hitchcock E, McAllister Byun T. Selecting an acoustic correlate for automated measurement of American English rhotic production in children. Int J Speech Lang Pathol. 2018 Nov;20(6):635-643. doi: 10.1080/17549507.2017.1359334. Epub 2017 Aug 10.
Campbell H, McAllister Byun T. Deriving individualised /r/ targets from the acoustics of children's non-rhotic vowels. Clin Linguist Phon. 2018;32(1):70-87. doi: 10.1080/02699206.2017.1330898. Epub 2017 Jul 13.
McAllister Byun T. Efficacy of Visual-Acoustic Biofeedback Intervention for Residual Rhotic Errors: A Single-Subject Randomization Study. J Speech Lang Hear Res. 2017 May 24;60(5):1175-1193. doi: 10.1044/2016_JSLHR-S-16-0038.
McAllister Byun T, Tiede M. Perception-production relations in later development of American English rhotics. PLoS One. 2017 Feb 16;12(2):e0172022. doi: 10.1371/journal.pone.0172022. eCollection 2017.
McAllister Byun T, Campbell H. Differential Effects of Visual-Acoustic Biofeedback Intervention for Residual Speech Errors. Front Hum Neurosci. 2016 Nov 11;10:567. doi: 10.3389/fnhum.2016.00567. eCollection 2016.
McAllister Byun T, Halpin PF, Szeredi D. Online crowdsourcing for efficient rating of speech: a validation study. J Commun Disord. 2015 Jan-Feb;53:70-83. doi: 10.1016/j.jcomdis.2014.11.003. Epub 2014 Dec 15.
Hitchcock ER, Byun TM, Swartz M, Lazarus R. Efficacy of Electropalatography for Treating Misarticulation of /r/. Am J Speech Lang Pathol. 2017 Nov 8;26(4):1141-1158. doi: 10.1044/2017_AJSLP-16-0122.
Harel D, Hitchcock ER, Szeredi D, Ortiz J, McAllister Byun T. Finding the experts in the crowd: Validity and reliability of crowdsourced measures of children's gradient speech contrasts. Clin Linguist Phon. 2017;31(1):104-117. doi: 10.3109/02699206.2016.1174306. Epub 2016 Jun 7.
Byun TM, Hitchcock ER, Swartz MT. Retroflex versus bunched in treatment for rhotic misarticulation: evidence from ultrasound biofeedback intervention. J Speech Lang Hear Res. 2014 Dec;57(6):2116-30. doi: 10.1044/2014_JSLHR-S-14-0034.
Byun TM, Hitchcock ER. Investigating the use of traditional and spectral biofeedback approaches to intervention for /r/ misarticulation. Am J Speech Lang Pathol. 2012 Aug;21(3):207-21. doi: 10.1044/1058-0360(2012/11-0083). Epub 2012 Mar 21.
McAllister T, Preston JL, Hitchcock ER, Hill J. Protocol for Correcting Residual Errors with Spectral, ULtrasound, Traditional Speech therapy Randomized Controlled Trial (C-RESULTS RCT). BMC Pediatr. 2020 Feb 11;20(1):66. doi: 10.1186/s12887-020-1941-5.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol and Statistical Analysis Plan
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
C-RESULTS-RCT
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.