Effects of Abatacept on Myocarditis in Rheumatoid Arthritis
NCT ID: NCT03619876
Last Updated: 2023-05-08
Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
TERMINATED
PHASE4
11 participants
INTERVENTIONAL
2019-07-10
2021-09-15
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Study of Abatacept (BMS-188667) in Subjects With Active Rheumatoid Arthritis on Background Non-biologic DMARDS (Disease Modifying Antirheumatic Drugs) Who Have an Inadequate Response to Anti-TNF Therapy
NCT00124982
A Study to Evaluate Biomarkers to Predict Efficacy of Abatacept in Rheumatoid Arthritis
NCT03882008
A Phase III Study of Abatacept (BMS-188667) in Patients With Active Rheumatoid Arthritis and Inadequate Response to Methotrexate
NCT00048568
Safety Study of Abatacept to Treat Rheumatoid Arthritis
NCT01247766
Does Abatacept Induce Regulatory B Cells in Patients With Rheumatoid Arthritis
NCT02885818
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
In a single RHeumatoid arthritis studY of THe Myocardium (RHYTHM study), a total of 119 RA patients without clinical CVD underwent cardiac FDG-PET/CT, with myocardial inflammation assessed qualitatively and quantitatively by visual inspection and by calculation of the standardized-uptake-value (SUV) units. Qualitative myocardial FDG uptake was observed in 39% of the patients. Animal data showing decreased myocardial inflammation, damage, and mortality, and improved cardiac function with CD40L/B7-1 and CTLA4 blockage, coupled with preliminary findings of lower myocardial inflammation in RA patients on abatacept vs other DMARDs, suggest that abatacept treatment has potential myocardial benefits. In RA patients, the proportion of peripheral T cell subsets significantly differs from normal controls and include differentiation to memory effector subsets, acquisition of natural killer (NK) receptors, exhaustion markers, and enhanced inflammatory cytokine expression. Importantly, T cell lymphocytic infiltration described in autoimmune myocarditis resulting as a complication of CTLA4 immune checkpoint inhibition, suggests a role for T cell subsets in the pathogenesis of myocarditis in RA with potential differences depending on mechanism of action of the DMARD in use. Studies that investigate the impact of treatment on subclinical myocarditis in RA, a possible contributor to heart failure, while exploring potential underlying mechanisms (i.e., different T cell subpopulations), are needed for a better understanding of their relevance in the pathogenesis of heart failure in RA and survival improvement in these patients with excess risk for cardiovascular death. If the investigator hypothesis is confirmed and treatment with abatacept decreases and/or suppresses or prevents myocardial inflammation in RA, this will have multidisciplinary implications that could lead to changes in the current management of RA patients at high risk for cardiovascular events. Similarly, identification of T cell subpopulations in RA patients with myocardial FDG uptake will shed light into the underlying cellular mechanisms of myocardial injury and serve to guide the use of therapies that prevent their pathogenicity.
This is a single-center study. Twenty RA patients will be recruited over a planned recruitment period of 24 months, and randomized with aims of enrolling 10 patients per year, the enrollment rate is estimated as 1 patient per month. The target population consists of patients who are deemed methotrexate-inadequate responders by the patient's treating rheumatologist, and who have not yet stepped up to additional treatment with a biologic DMARD.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Non- Tumor necrosis factor (TNF) inhibitor arm
Treatment with abatacept will consist of weekly subcutaneous (SQ) injections at a dose of 125mg.
Abatacept
125 MG/ML subcutaneous injections
TNF inhibitor arm
Treatment with a adalimumab, as the TNF-inhibitor arm, will consist of every 2 weeks SQ injections at a dose of 40mg.
Adalimumab
40 Mg/0.8 mL Subcutaneous Kit
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Abatacept
125 MG/ML subcutaneous injections
Adalimumab
40 Mg/0.8 mL Subcutaneous Kit
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Patients age \> 18 years.
* Fulfilling the American College of Rheumatology 2010 classification criteria for RA.
* MTX for ≥ 8 weeks at ≥ 15mg weekly or on at least 7.5mg of methotrexate weekly for ≥8 weeks with a documented intolerance of higher MTX doses, and on a stable dose for the previous 4 weeks;
* Naïve to biologic treatment.
* If the subject is a woman with childbearing potential, a urine sample will be taken for a pregnancy test. The results of the pregnancy test must be negative.
Exclusion Criteria
* Any prior self-reported physician diagnosed CV event (myocardial infarction; angina; stroke or Transient Ischemic Attack (TIA); heart failure; prior CV procedure (i.e., coronary artery bypass graft, angioplasty, valve replacement, pacemaker).
* Active history of cancer.
* Prior use of immune checkpoint inhibitors.
* Known pregnancy, HIV, hepatitis B, hepatitis C, active (or untreated latent) tuberculosis.
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Bristol-Myers Squibb
INDUSTRY
Columbia University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Laura Geraldino-Pardilla
Assistant Professor of Medicine
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Laura Geraldino-Pardilla, MD
Role: PRINCIPAL_INVESTIGATOR
CUMC
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Columbia University Medical Center
New York, New York, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Symmons DP, Jones MA, Scott DL, Prior P. Longterm mortality outcome in patients with rheumatoid arthritis: early presenters continue to do well. J Rheumatol. 1998 Jun;25(6):1072-7.
Solomon DH, Karlson EW, Rimm EB, Cannuscio CC, Mandl LA, Manson JE, Stampfer MJ, Curhan GC. Cardiovascular morbidity and mortality in women diagnosed with rheumatoid arthritis. Circulation. 2003 Mar 11;107(9):1303-7. doi: 10.1161/01.cir.0000054612.26458.b2.
Sihvonen S, Korpela M, Laippala P, Mustonen J, Pasternack A. Death rates and causes of death in patients with rheumatoid arthritis: a population-based study. Scand J Rheumatol. 2004;33(4):221-7. doi: 10.1080/03009740410005845.
Solomon DH, Goodson NJ, Katz JN, Weinblatt ME, Avorn J, Setoguchi S, Canning C, Schneeweiss S. Patterns of cardiovascular risk in rheumatoid arthritis. Ann Rheum Dis. 2006 Dec;65(12):1608-12. doi: 10.1136/ard.2005.050377. Epub 2006 Jun 22.
Wolfe F, Freundlich B, Straus WL. Increase in cardiovascular and cerebrovascular disease prevalence in rheumatoid arthritis. J Rheumatol. 2003 Jan;30(1):36-40.
LEBOWITZ WB. The heart in rheumatoid arthritis (rheumatoid disease). A clinical and pathological study of sixty-two cases. Ann Intern Med. 1963 Jan;58:102-23. doi: 10.7326/0003-4819-58-1-102. No abstract available.
CATHCART ES, SPODICK DH. Rheumatoid heart disease. A study of the incidence and nature of cardiac lesions in rheumatoid arthritis. N Engl J Med. 1962 May 10;266:959-64. doi: 10.1056/NEJM196205102661901. No abstract available.
SOKOLOFF L. CARDIAC INVOLVEMENT IN RHEUMATOID ARTHRITIS AND ALLIED DISORDERS: CURRENT CONCEPTS. Mod Concepts Cardiovasc Dis. 1964 Apr;33:847-50. No abstract available.
Han B, Jiang H, Liu Z, Zhang Y, Zhao L, Lu K, Xi J. CTLA4-Ig relieves inflammation in murine models of coxsackievirus B3-induced myocarditis. Can J Cardiol. 2012 Mar-Apr;28(2):239-44. doi: 10.1016/j.cjca.2011.11.014. Epub 2012 Feb 14.
Matsui Y, Inobe M, Okamoto H, Chiba S, Shimizu T, Kitabatake A, Uede T. Blockade of T cell costimulatory signals using adenovirus vectors prevents both the induction and the progression of experimental autoimmune myocarditis. J Mol Cell Cardiol. 2002 Mar;34(3):279-95. doi: 10.1006/jmcc.2001.1511.
Abe S, Hanawa H, Hayashi M, Yoshida T, Komura S, Watanabe R, Lie H, Chang H, Kato K, Kodama M, Maruyama H, Nakazawa M, Miyazaki J, Aizawa Y. Prevention of experimental autoimmune myocarditis by hydrodynamics-based naked plasmid DNA encoding CTLA4-Ig gene delivery. J Card Fail. 2005 Sep;11(7):557-64. doi: 10.1016/j.cardfail.2005.04.005.
Liu W, Gao C, Zhou BG, Li WM. Effects of adenovirus-mediated gene transfer of ICOSIg and CTLA4Ig fusion protein on experimental autoimmune myocarditis. Autoimmunity. 2006 Mar;39(2):83-92. doi: 10.1080/08916930500507870.
Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y, Hicks M, Puzanov I, Alexander MR, Bloomer TL, Becker JR, Slosky DA, Phillips EJ, Pilkinton MA, Craig-Owens L, Kola N, Plautz G, Reshef DS, Deutsch JS, Deering RP, Olenchock BA, Lichtman AH, Roden DM, Seidman CE, Koralnik IJ, Seidman JG, Hoffman RD, Taube JM, Diaz LA Jr, Anders RA, Sosman JA, Moslehi JJ. Fulminant Myocarditis with Combination Immune Checkpoint Blockade. N Engl J Med. 2016 Nov 3;375(18):1749-1755. doi: 10.1056/NEJMoa1609214.
Varricchi G, Galdiero MR, Tocchetti CG. Cardiac Toxicity of Immune Checkpoint Inhibitors: Cardio-Oncology Meets Immunology. Circulation. 2017 Nov 21;136(21):1989-1992. doi: 10.1161/CIRCULATIONAHA.117.029626. No abstract available.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol and Statistical Analysis Plan
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
AAAS2235
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.