The Changes of Body Composition, Glucolipid Metabolism and Bone Metabolism in Obese Children After Weight Loss
NCT ID: NCT03490448
Last Updated: 2018-04-06
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
53 participants
INTERVENTIONAL
2014-07-06
2014-08-16
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Another indicator of bone metabolism-osteocalcin may also be involved in energy metabolism and glucose metabolism, and undercarboxylated osteocalcin (ucOC) is the form which has physiological activity. ucOC may recombine with the receptors on the surface of pancreas β cells, adipocytes, hepatocytes and intestinal endocrine cell to regulate insulin secretion and insulin sensitivity.
Currently, the prevalence of vitamin D deficiency is a global problem in all age groups currently, even in countries with sun exposure all year around. The obesity group tend to have a higher incidence of vitamin D deficiency.Moreover, the obesity group tend to have a higher incidence of vitamin D deficiency and a lower level of serum osteocalcin.
This study observed the changes of body composition and glucolipid metabolism and bone metabolism during weight loss, and investigated the correlations among them.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Endothelial Dysfunction in Obese Children
NCT01461226
Obesity, Inflammation and Aging: Effects of Physical Exercise and Omega-3 Fatty Acids.
NCT03300388
Body Composition and Lipid Metabolism at Rest and During Exercise: A Cross-Sectional Analysis.
NCT03029364
Adiponectin, ICAM-1, VCAM-1 Levels and Metabolic Syndrome in Obese Adolescents
NCT05685017
Corticosteroid-induced Lipodystrophy and Adipokines
NCT00822042
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Osteocalcin is produced and secreted by osteoblast specifically. Recent studies have shown that it regulated glucose metabolism and energy metabolism. Obese group may have a lower level of serum osteocalcin. Both 25-OHD and osteocalcin have association with energy metabolism. This study will provide evidence to realize the relationship between bone metabolism and obesity.
In our study, all subjects were recruited from the obese children and adolescents aged 9\~17 years who participated in six-week weight loss camp in July \~ August, 2014. Body mass index (BMI) was calculated as weight (kg) divided by height squared (m2). Obesity was defined as having a BMI greater than or equal to the 95th percentile for age and sex according to WHO standard. Exclusion criteria included: 1) obesity caused by endocrine or heredity diseases (eg, hypothyroidism, Prader-Willi syndrome, single-gene defects); 2) any disease influencing vitamin D metabolism (eg, such as metabolic bone diseases, rickets, nephritic syndrome and hepatic failure); 3) any supplementation use or any medication affecting vitamin D metabolism use.
All subjects underwent a closed-off weight loss program for six weeks. The intervention methods included aerobic exercise and appropriate caloric control. The dietary was designed on the basis of ensuring the daily energy physiological requirement, and basal metabolic rate (BMR) was calculated to formulate diet project according to Harris-Benedict formula. The diet was composed of 20% protein, 30% fat and 50% carbohydrates. During the camp, all subjects had never taken any kinds of nutritional supplements.
Before intervention, all subjects received exercise load test to ensure safe and effective physical exercise. In the exercise, heart rate was monitored to ensure the small-medial load aerobic exercise. The exercise programs included ball games, such as badminton, table tennis, and basketball, and also included jogging, brisk walking, swimming and cycle ergometer. All kinds of sports were conducted indoor, twice per day, 6 days per week, and lasted for 2 hours every time. The weight loss camp was staffed by professional sports coaches and medical workers. Exercise intensity was estimated by a formula: exercise intensity (target heart rate) =resting heart rate + heart rate reserve (maximum heart rate-resting heart rate) × (20%\~40%).
Before and after intervention, fasting blood samples were collected and sent to Shanghai Adicon Central Lab Test Menu immediately stored in 4°C ice packs. The indicators of glucolipid metabolism and bone metabolism were tested. Total cholesterol (TC) with cholesterol oxidase, triglyceride (TG) with enzyme method (GPO-POD), high density lipoprotein (HDL) and low density lipoprotein (LDL) with homogeneous methods, fasting blood glucose (FBG) with hexokinase (HK) method, fasting insulin (FINS) with chemiluminescence method. Among the indicators of bone metabolism, osteocalcin, parathyroid hormone (PTH) and 25-OHD were assayed by electrochemiluminescence immunoassay, while bone specific alkaline phosphatase (BALP), total propeptide of type I procollagen (T-PINP) and β-isomerized form carboxy-terminal telopeptide of type I collagen (β-CTX) were determined by immunoenzymatic methods.
After blood samples were collected, anthropometric parameters were measured, including height (Seca 264, Germany), weight (Biospace 370, South Korea), triceps skinfold thickness (TST) and subscapular skinfold thickness (SST) (skinfold caliper 689900). For error reduction, every anthropometric measurement was conducted by the same trained personnels before and after weight-loss.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
HEALTH_SERVICES_RESEARCH
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
intervention group
aerobic exercise and appropriate caloric control
aerobic exercise and appropriate caloric control
The dietary was designed on the basis of ensuring the daily energy physiological requirement, and basal metabolic rate (BMR) was calculated to formulate diet project according to Harris-Benedict formula. The diet was composed of 20% protein, 30% fat and 50% carbohydrates.In the exercise, heart rate was monitored to ensure the small-medial load aerobic exercise. All kinds of sports were conducted indoor, twice per day, 6 days per week, and lasted for 2 hours every time.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
aerobic exercise and appropriate caloric control
The dietary was designed on the basis of ensuring the daily energy physiological requirement, and basal metabolic rate (BMR) was calculated to formulate diet project according to Harris-Benedict formula. The diet was composed of 20% protein, 30% fat and 50% carbohydrates.In the exercise, heart rate was monitored to ensure the small-medial load aerobic exercise. All kinds of sports were conducted indoor, twice per day, 6 days per week, and lasted for 2 hours every time.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
* 2\) any disease influencing vitamin D metabolism (eg, such as metabolic bone diseases, rickets, nephritic syndrome and hepatic failure);
* 3\) any supplementation use or any medication affecting vitamin D metabolism use.
9 Years
17 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Xinhua Hospital, Shanghai Jiao Tong University School of Medicine
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
qingya tang
chief physician
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Qingya Tang, Mater
Role: PRINCIPAL_INVESTIGATOR
Department of Clinical Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
Shanghai, Shanghai Municipality, China
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Awad AB, Alappat L, Valerio M. Vitamin d and metabolic syndrome risk factors: evidence and mechanisms. Crit Rev Food Sci Nutr. 2012;52(2):103-12. doi: 10.1080/10408391003785458.
Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM; Endocrine Society. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011 Jul;96(7):1911-30. doi: 10.1210/jc.2011-0385. Epub 2011 Jun 6.
Holick MF. Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis. Am J Clin Nutr. 2004 Mar;79(3):362-71. doi: 10.1093/ajcn/79.3.362.
Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007 Aug 10;130(3):456-69. doi: 10.1016/j.cell.2007.05.047.
Ferron M, Hinoi E, Karsenty G, Ducy P. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci U S A. 2008 Apr 1;105(13):5266-70. doi: 10.1073/pnas.0711119105. Epub 2008 Mar 24.
Liu JJ, Chen YY, Mo ZN, Tian GX, Tan AH, Gao Y, Yang XB, Zhang HY, Li ZX. Relationship between serum osteocalcin levels and non-alcoholic fatty liver disease in adult males, South China. Int J Mol Sci. 2013 Sep 30;14(10):19782-91. doi: 10.3390/ijms141019782.
Palacios C, Gonzalez L. Is vitamin D deficiency a major global public health problem? J Steroid Biochem Mol Biol. 2014 Oct;144 Pt A:138-45. doi: 10.1016/j.jsbmb.2013.11.003. Epub 2013 Nov 12.
Nam GE, Kim DH, Cho KH, Park YG, Han KD, Kim SM, Lee SH, Ko BJ, Kim MJ. 25-Hydroxyvitamin D insufficiency is associated with cardiometabolic risk in Korean adolescents: the 2008-2009 Korea National Health and Nutrition Examination Survey (KNHANES). Public Health Nutr. 2014 Jan;17(1):186-94. doi: 10.1017/S1368980012004855. Epub 2012 Nov 20.
Torun E, Gonullu E, Ozgen IT, Cindemir E, Oktem F. Vitamin d deficiency and insufficiency in obese children and adolescents and its relationship with insulin resistance. Int J Endocrinol. 2013;2013:631845. doi: 10.1155/2013/631845. Epub 2013 Mar 27.
Wang JW, Tang QY, Ruan HJ, Cai W. Relation between serum osteocalcin levels and body composition in obese children. J Pediatr Gastroenterol Nutr. 2014 Jun;58(6):729-32. doi: 10.1097/MPG.0000000000000243.
Niu Y, Zhao XL, Ruan HJ, Mao XM, Tang QY. Uric acid is associated with adiposity factors, especially with fat mass reduction during weight loss in obese children and adolescents. Nutr Metab (Lond). 2020 Sep 22;17:79. doi: 10.1186/s12986-020-00500-9. eCollection 2020.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
XH-DCN-Obesity
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.