Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
80 participants
OBSERVATIONAL
2018-12-12
2022-06-15
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Sleep Apnea and Cognitive Function in Subjects With Subjective or Mild Cognitive Impairment
NCT06089096
Neuropsychiatric Outcomes and Disrupted Sleep Following Acquired Brain Injury
NCT07215195
Sleep Deprivation Study
NCT05560620
Sleep Disordered Breathing, APOE, and Lipid Metabolism
NCT00046670
Effects of Acute Intermittent Hypoxia on Brain Function Imaging and Systemic Inflammation
NCT03453697
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Sleep apnea patients
80 patients recently diagnosed with severe sleep apnea will participate in the Brain Changes in Sleep Apnea Study.
Brain MRI, cognitive testing, bloodwork
Participants will undergo 3-Tesla MRI. Scan time will be about 1 hour and 15 minutes per subject per session at the Sunnybrook site. The protocol is designed to image SVD burden by quantifying PVS and WMH volumes, and image various physiological estimates on the brain.
Participants will undergo the following cognitive tests: Behavioural Neurology Assessment-R (BNA-R), Montreal Cognitive Assessment (MOCA), Center for Epidemiologic Studies Depression Scale (CES-D), and BrainScreen.
Blood samples will be assayed for inflammatory and endothelial function. Classical vascular risk factors will also be assessed. Once data collection is complete, DNA will be extracted from the frozen PBMC fraction and will be genotyped for APOE genotype and a panel of other single nucleotide polymorphisms known to be associated with cognition and cerebrovascular disease.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Brain MRI, cognitive testing, bloodwork
Participants will undergo 3-Tesla MRI. Scan time will be about 1 hour and 15 minutes per subject per session at the Sunnybrook site. The protocol is designed to image SVD burden by quantifying PVS and WMH volumes, and image various physiological estimates on the brain.
Participants will undergo the following cognitive tests: Behavioural Neurology Assessment-R (BNA-R), Montreal Cognitive Assessment (MOCA), Center for Epidemiologic Studies Depression Scale (CES-D), and BrainScreen.
Blood samples will be assayed for inflammatory and endothelial function. Classical vascular risk factors will also be assessed. Once data collection is complete, DNA will be extracted from the frozen PBMC fraction and will be genotyped for APOE genotype and a panel of other single nucleotide polymorphisms known to be associated with cognition and cerebrovascular disease.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Apnea hypopnea index \>=15 on diagnostic polysomnogram;
* Oxygen desaturation index \>=10 or O2 saturation in sleep \<90% for \>15 minutes on diagnostic polysomnogram;
* Subjectively sleepy;
* Planning on starting CPAP for sleep apnea.
Exclusion Criteria
* Unable to safely undergo MRI;
* Use of alpha-blocking agents;
* Persistent non-sinus arrhythmia;
* Severe pulmonary or cardiac diseases including COPD and CHF;
* Waking spO2\<90%;
* History of panic disorder.
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Edinburgh
OTHER
Dr. Andrew Lim
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Dr. Andrew Lim
Scientist, staff neurologist
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Andrew Lim, MD, FRCPC
Role: PRINCIPAL_INVESTIGATOR
Sunnybrook Health Sciences Centre
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Sunnybrook Health Sciences Centre
Toronto, Ontario, Canada
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993 Apr 29;328(17):1230-5. doi: 10.1056/NEJM199304293281704.
Ancoli-Israel S, Kripke DF, Klauber MR, Mason WJ, Fell R, Kaplan O. Sleep-disordered breathing in community-dwelling elderly. Sleep. 1991 Dec;14(6):486-95. doi: 10.1093/sleep/14.6.486.
Yaffe K, Laffan AM, Harrison SL, Redline S, Spira AP, Ensrud KE, Ancoli-Israel S, Stone KL. Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women. JAMA. 2011 Aug 10;306(6):613-9. doi: 10.1001/jama.2011.1115.
Redline S, Yenokyan G, Gottlieb DJ, Shahar E, O'Connor GT, Resnick HE, Diener-West M, Sanders MH, Wolf PA, Geraghty EM, Ali T, Lebowitz M, Punjabi NM. Obstructive sleep apnea-hypopnea and incident stroke: the sleep heart health study. Am J Respir Crit Care Med. 2010 Jul 15;182(2):269-77. doi: 10.1164/rccm.200911-1746OC. Epub 2010 Mar 25.
Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O'Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M. Sleep drives metabolite clearance from the adult brain. Science. 2013 Oct 18;342(6156):373-7. doi: 10.1126/science.1241224.
Kim H, Yun CH, Thomas RJ, Lee SH, Seo HS, Cho ER, Lee SK, Yoon DW, Suh S, Shin C. Obstructive sleep apnea as a risk factor for cerebral white matter change in a middle-aged and older general population. Sleep. 2013 May 1;36(5):709-715B. doi: 10.5665/sleep.2632.
Lim AS, Yu L, Schneider JA, Bennett DA, Buchman AS. Sleep Fragmentation, Cerebral Arteriolosclerosis, and Brain Infarct Pathology in Community-Dwelling Older People. Stroke. 2016 Feb;47(2):516-8. doi: 10.1161/STROKEAHA.115.011608. Epub 2016 Jan 14.
Berezuk C, Ramirez J, Gao F, Scott CJ, Huroy M, Swartz RH, Murray BJ, Black SE, Boulos MI. Virchow-Robin Spaces: Correlations with Polysomnography-Derived Sleep Parameters. Sleep. 2015 Jun 1;38(6):853-8. doi: 10.5665/sleep.4726.
Malhotra A, Younes M, Kuna ST, Benca R, Kushida CA, Walsh J, Hanlon A, Staley B, Pack AI, Pien GW. Performance of an automated polysomnography scoring system versus computer-assisted manual scoring. Sleep. 2013 Apr 1;36(4):573-82. doi: 10.5665/sleep.2548.
Gottlieb DJ, Punjabi NM, Mehra R, Patel SR, Quan SF, Babineau DC, Tracy RP, Rueschman M, Blumenthal RS, Lewis EF, Bhatt DL, Redline S. CPAP versus oxygen in obstructive sleep apnea. N Engl J Med. 2014 Jun 12;370(24):2276-85. doi: 10.1056/NEJMoa1306766.
Martinez-Garcia MA, Capote F, Campos-Rodriguez F, Lloberes P, Diaz de Atauri MJ, Somoza M, Masa JF, Gonzalez M, Sacristan L, Barbe F, Duran-Cantolla J, Aizpuru F, Manas E, Barreiro B, Mosteiro M, Cebrian JJ, de la Pena M, Garcia-Rio F, Maimo A, Zapater J, Hernandez C, Grau SanMarti N, Montserrat JM; Spanish Sleep Network. Effect of CPAP on blood pressure in patients with obstructive sleep apnea and resistant hypertension: the HIPARCO randomized clinical trial. JAMA. 2013 Dec 11;310(22):2407-15. doi: 10.1001/jama.2013.281250.
Hachinski V; World Stroke Organization. Stroke and Potentially Preventable Dementias Proclamation: Updated World Stroke Day Proclamation. Stroke. 2015 Nov;46(11):3039-40. doi: 10.1161/STROKEAHA.115.011237. No abstract available.
Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, Xie L, Kang H, Xu Q, Liew JA, Plog BA, Ding F, Deane R, Nedergaard M. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014 Dec;76(6):845-61. doi: 10.1002/ana.24271. Epub 2014 Sep 26.
Jessen NA, Munk AS, Lundgaard I, Nedergaard M. The Glymphatic System: A Beginner's Guide. Neurochem Res. 2015 Dec;40(12):2583-99. doi: 10.1007/s11064-015-1581-6. Epub 2015 May 7.
Achariyar TM, Li B, Peng W, Verghese PB, Shi Y, McConnell E, Benraiss A, Kasper T, Song W, Takano T, Holtzman DM, Nedergaard M, Deane R. Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation. Mol Neurodegener. 2016 Dec 8;11(1):74. doi: 10.1186/s13024-016-0138-8.
Lundblad LC, Fatouleh RH, Hammam E, McKenzie DK, Macefield VG, Henderson LA. Brainstem changes associated with increased muscle sympathetic drive in obstructive sleep apnoea. Neuroimage. 2014 Dec;103:258-266. doi: 10.1016/j.neuroimage.2014.09.031. Epub 2014 Sep 22.
Lundblad LC, Fatouleh RH, McKenzie DK, Macefield VG, Henderson LA. Brain stem activity changes associated with restored sympathetic drive following CPAP treatment in OSA subjects: a longitudinal investigation. J Neurophysiol. 2015 Aug;114(2):893-901. doi: 10.1152/jn.00092.2015. Epub 2015 May 20.
O'Brien E, Mee F, Atkins N, O'Malley K. Accuracy of the SpaceLabs 90207, Novacor DIASYS 200, Del Mar Avionics Pressurometer IV and Takeda TM-2420 ambulatory systems according to British and American criteria. J Hypertens Suppl. 1991 Dec;9(6):S332-3. No abstract available.
O'Brien E, Mee F, Atkins N, O'Malley K. Accuracy of the SpaceLabs 90207 determined by the British Hypertension Society protocol. J Hypertens. 1991 Jun;9(6):573-4. doi: 10.1097/00004872-199106000-00016. No abstract available.
Baumgart P, Kamp J. Accuracy of the SpaceLabs Medical 90217 ambulatory blood pressure monitor. Blood Press Monit. 1998 Oct;3(5):303-307.
Clement DL, De Buyzere ML, De Bacquer DA, de Leeuw PW, Duprez DA, Fagard RH, Gheeraert PJ, Missault LH, Braun JJ, Six RO, Van Der Niepen P, O'Brien E; Office versus Ambulatory Pressure Study Investigators. Prognostic value of ambulatory blood-pressure recordings in patients with treated hypertension. N Engl J Med. 2003 Jun 12;348(24):2407-15. doi: 10.1056/NEJMoa022273.
Lichstein KL, Stone KC, Donaldson J, Nau SD, Soeffing JP, Murray D, Lester KW, Aguillard RN. Actigraphy validation with insomnia. Sleep. 2006 Feb;29(2):232-9.
Witting W, Kwa IH, Eikelenboom P, Mirmiran M, Swaab DF. Alterations in the circadian rest-activity rhythm in aging and Alzheimer's disease. Biol Psychiatry. 1990 Mar 15;27(6):563-72. doi: 10.1016/0006-3223(90)90523-5.
Sokolove PG, Bushell WN. The chi square periodogram: its utility for analysis of circadian rhythms. J Theor Biol. 1978 May 8;72(1):131-60. doi: 10.1016/0022-5193(78)90022-x. No abstract available.
Sohail S, Yu L, Bennett DA, Buchman AS, Lim AS. Irregular 24-hour activity rhythms and the metabolic syndrome in older adults. Chronobiol Int. 2015;32(6):802-13. doi: 10.3109/07420528.2015.1041597. Epub 2015 Jun 10.
Lim AS, Srivastava GP, Yu L, Chibnik LB, Xu J, Buchman AS, Schneider JA, Myers AJ, Bennett DA, De Jager PL. 24-hour rhythms of DNA methylation and their relation with rhythms of RNA expression in the human dorsolateral prefrontal cortex. PLoS Genet. 2014 Nov 6;10(11):e1004792. doi: 10.1371/journal.pgen.1004792. eCollection 2014 Nov.
Lim AS, Yu L, Costa MD, Buchman AS, Bennett DA, Leurgans SE, Saper CB. Quantification of the fragmentation of rest-activity patterns in elderly individuals using a state transition analysis. Sleep. 2011 Nov 1;34(11):1569-81. doi: 10.5665/sleep.1400.
Lim AS, Kowgier M, Yu L, Buchman AS, Bennett DA. Sleep Fragmentation and the Risk of Incident Alzheimer's Disease and Cognitive Decline in Older Persons. Sleep. 2013 Jul 1;36(7):1027-1032. doi: 10.5665/sleep.2802.
Yalamanchali S, Farajian V, Hamilton C, Pott TR, Samuelson CG, Friedman M. Diagnosis of obstructive sleep apnea by peripheral arterial tonometry: meta-analysis. JAMA Otolaryngol Head Neck Surg. 2013 Dec;139(12):1343-50. doi: 10.1001/jamaoto.2013.5338.
Onder NS, Akpinar ME, Yigit O, Gor AP. Watch peripheral arterial tonometry in the diagnosis of obstructive sleep apnea: influence of aging. Laryngoscope. 2012 Jun;122(6):1409-14. doi: 10.1002/lary.23233. Epub 2012 Apr 20.
Hedner J, White DP, Malhotra A, Herscovici S, Pittman SD, Zou D, Grote L, Pillar G. Sleep staging based on autonomic signals: a multi-center validation study. J Clin Sleep Med. 2011 Jun 15;7(3):301-6. doi: 10.5664/JCSM.1078.
Zakzanis KK, Azarbehi R. Introducing BRAINscreen: web-based real-time examination and interpretation of cognitive function. Appl Neuropsychol Adult. 2014;21(2):77-86. doi: 10.1080/09084282.2012.742994. Epub 2013 Jun 27.
Radloff, L.S. (1977). The CED-D scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1, 385-401
Sommer R, Hill EA, Ramirez J, Coello RD, Ballerini L, Gibson E, Berberian S, Valdes Hernandez MDC, Centen A, Chappell FM, Montazeri N, Stringer MS, Thrippleton M, Jaime Garcia D, Wiseman S, Narayansingh M, Tandon A, Boulos MI, Murray BJ, Doubal F, Riha RL, Goubran M, Macintosh BJ, Wardlaw JM, Black SE, Lim ASP. Continuous Positive Airway Pressure and Progression of Enlarged Perivascular Spaces in Adults With Obstructive Sleep Apnea. Neurology. 2025 Oct;105(8):e213955. doi: 10.1212/WNL.0000000000213955. Epub 2025 Sep 29.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
SleepApneaStudy
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.