Microvascular Dysfunction and the Development of Whole-body Insulin Resistance
NCT ID: NCT02628301
Last Updated: 2017-07-26
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
20 participants
INTERVENTIONAL
2015-04-30
2017-05-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Personalized Glucose Optimization Through Nutritional Intervention
NCT03708419
Effect of Dietary Glycemic Index on Beta-cell Function
NCT01386645
Effects of Macronutrients on Hepatic Lipids, Plasma Triglycerides, and Insulin Sensitivity
NCT00523562
Effect of Timed-Restricted Eating on Metabolic Health
NCT06061042
Age, Lifestyle, Muscle Mechanisms in Insulin Resistance
NCT00971594
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The primary targets of insulin action are skeletal muscle, adipose tissue and the liver, but recent data point to the vascular endothelium as an important target. Insulin directly targets the endothelial cell where it activates phosphoinositide 3-kinase, resulting in Akt-mediated phosphorylation of endothelial nitric oxide synthase (eNOS). This leads to NO production - a potent vasodilator in the human body. Simultaneously insulin also activates the mitogen-activated protein kinase pathway in endothelial cells, which enhances the generation of the vasoconstrictor endothelin-1 via extracellular signal-regulated kinases 1/2 signaling. Via these two pathways insulin can regulate vascular tone.
In healthy individuals, insulin signaling in the endothelial cell leads to capillary recruitment in skeletal muscle tissue via vasodilatation of terminal arterioles. It has been proposed that insulin in this matter regulates the delivery of insulin and glucose to skeletal muscle by increasing endothelial surface area. In obese individuals and patients with T2DM, insulin-mediated capillary recruitment in skeletal muscle tissue is impaired and insulin-dependent glucose uptake is diminished. Whether these two processes are linked or occur in parallel remains unknown.
Interestingly, studies in rodents demonstrated that during obesity induced by high fat feeding, insulin resistance develops in the vasculature before these responses are detected in muscle, liver, or adipose tissue. Therefore, insulin signaling in endothelium might change in response to a positive energy balance to prevent nutrient overload in muscle and optimize nutrient storage in adipose tissue. Conversely, it has been hypothesized that early reversal of endothelial insulin resistance could prevent peripheral insulin resistance, assuming a cause-and-effect relationship between these processes. The most compelling evidence for this hypothesis came from studies in endothelial cell specific insulin receptor substrate-2 (IRS-2) knock-out mice. Kubota et al. demonstrated that impaired insulin signaling in endothelial cells, due to reduced IRS-2 expression and insulin-induced eNOS phosphorylation, caused attenuation of insulin-induced capillary recruitment and insulin delivery, which reduced glucose uptake by skeletal muscle. Moreover, restoration of insulin-induced eNOS phosphorylation in endothelial cells by infusion of beraprost sodium - a stable prostaglandin analogue - completely reversed the reduction in capillary recruitment and insulin delivery in tissue-specific knockout mice lacking IRS-2 in endothelial cells and fed a high-fat diet. As a result, glucose uptake by skeletal muscle was restored in these mice.
These data suggest that pharmacological stimulation of tissue perfusion may hold promise as a therapeutic strategy to increase whole body glucose disposal and thus prevent or reduce hyperglycaemia. In humans however, data linking improvement of capillary recruitment by pharmacological agents to restoration of whole-body glucose uptake are lacking. Low dose iloprost infusion - another stable prostaglandin analogue - has been shown to improve insulin-stimulated whole-body glucose uptake, but the mechanistic role of microvascular response was not assessed. Overall, it remains to be demonstrated whether improving capillary recruitment by endothelial insulin signaling or direct stimulation of smooth muscle tissue may serve as an attractive preventive or therapeutic approach to bypass cellular resistance to glucose disposal.
In conclusion, vascular insulin resistance leads to blunted capillary recruitment in the skeletal muscle and may lead to diminished glucose uptake due to a decreased capillary surface area for nutrient exchange. Up till now however it remains unclear if these processes are interrelated or occur in parallel. Evidence from animal studies suggest that vascular insulin resistance precedes diminished whole-body glucose uptake and myocellular impairments. This indicates a potential cause-effect relationship. In humans, however, this was never demonstrated. On the other hand, decreased capillary recruitment of skeletal muscle tissue could also protect muscle tissue from nutrient overload and shunt excess calories towards adipose tissue. Presently, it is unknown whether insulin redistributes blood flow from skeletal muscle to adipose tissue during hypercaloric conditions. Finally, it is unknown if stimulation of tissue perfusion with a pharmacological agent can restore whole-body glucose uptake is therefore an effective strategy in prevention or treatment of insulin resistance.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
BASIC_SCIENCE
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Hypercaloric diet
Hypercaloric diet (1.6x REE) for 30 days
Hypercaloric diet
Hypercaloric diet consisting of 60% excess calories based on resting energy expenditure (REE). Calories will be provided in the form of snacks in between the ad libitum meals. A subsequent hypocaloric diet will consist of 1.0x resting energy expenditure.
Normal diet
Normocaloric diet (1.0xREE)
Normocaloric diet
Normocaloric diet
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Hypercaloric diet
Hypercaloric diet consisting of 60% excess calories based on resting energy expenditure (REE). Calories will be provided in the form of snacks in between the ad libitum meals. A subsequent hypocaloric diet will consist of 1.0x resting energy expenditure.
Normocaloric diet
Normocaloric diet
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* BMI 22-25 kg/m2
* Normal insulin sensitivity as estimated by Homeostasis Model Assessment (HOMA-IR)
* Normoglycemia as defined by fasting plasma glucose (FPG) \<6.1 mmol/l
* Normoglycemia as defined by 2 h glucose \<7.8 mmol/l during oral glucose tolerance test (OGTT)
* Normal diet pattern according to the Dutch guidelines for a healthy diet 2006
* Stable body weight (\<3% weight change) during 6 months before enrolment in the study
Exclusion Criteria
* Use of any relevant medication
* First-degree relative with type 2 diabetes
* Smoking
* Shift work
* A history of chronic glucocorticoids (GC) use or GC use \< 3 months ago
* Excessive sport activities (more often than 3 hours per week)
18 Years
30 Years
MALE
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Academisch Medisch Centrum - Universiteit van Amsterdam (AMC-UvA)
OTHER
Amsterdam UMC, location VUmc
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Erik Serne
MD, PhD
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Erik Serne, MD PhD
Role: PRINCIPAL_INVESTIGATOR
Amsterdam UMC, location VUmc
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
VU University Medical Center
Amsterdam, North Holland, Netherlands
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001 Dec 13;414(6865):799-806. doi: 10.1038/414799a.
Kim JA, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation. 2006 Apr 18;113(15):1888-904. doi: 10.1161/CIRCULATIONAHA.105.563213.
De Boer MP, Meijer RI, Wijnstok NJ, Jonk AM, Houben AJ, Stehouwer CD, Smulders YM, Eringa EC, Serne EH. Microvascular dysfunction: a potential mechanism in the pathogenesis of obesity-associated insulin resistance and hypertension. Microcirculation. 2012 Jan;19(1):5-18. doi: 10.1111/j.1549-8719.2011.00130.x.
Kim F, Pham M, Maloney E, Rizzo NO, Morton GJ, Wisse BE, Kirk EA, Chait A, Schwartz MW. Vascular inflammation, insulin resistance, and reduced nitric oxide production precede the onset of peripheral insulin resistance. Arterioscler Thromb Vasc Biol. 2008 Nov;28(11):1982-8. doi: 10.1161/ATVBAHA.108.169722. Epub 2008 Sep 4.
Barrett EJ, Eggleston EM, Inyard AC, Wang H, Li G, Chai W, Liu Z. The vascular actions of insulin control its delivery to muscle and regulate the rate-limiting step in skeletal muscle insulin action. Diabetologia. 2009 May;52(5):752-64. doi: 10.1007/s00125-009-1313-z. Epub 2009 Mar 13.
Park SY, Cho YR, Kim HJ, Higashimori T, Danton C, Lee MK, Dey A, Rothermel B, Kim YB, Kalinowski A, Russell KS, Kim JK. Unraveling the temporal pattern of diet-induced insulin resistance in individual organs and cardiac dysfunction in C57BL/6 mice. Diabetes. 2005 Dec;54(12):3530-40. doi: 10.2337/diabetes.54.12.3530.
Kubota T, Kubota N, Kumagai H, Yamaguchi S, Kozono H, Takahashi T, Inoue M, Itoh S, Takamoto I, Sasako T, Kumagai K, Kawai T, Hashimoto S, Kobayashi T, Sato M, Tokuyama K, Nishimura S, Tsunoda M, Ide T, Murakami K, Yamazaki T, Ezaki O, Kawamura K, Masuda H, Moroi M, Sugi K, Oike Y, Shimokawa H, Yanagihara N, Tsutsui M, Terauchi Y, Tobe K, Nagai R, Kamata K, Inoue K, Kodama T, Ueki K, Kadowaki T. Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metab. 2011 Mar 2;13(3):294-307. doi: 10.1016/j.cmet.2011.01.018.
Paolisso G, Di Maro G, D'Amore A, Passariello N, Gambardella A, Varricchio M, D'Onofrio F. Low-dose iloprost infusion improves insulin action in aged healthy subjects and NIDDM patients. Diabetes Care. 1995 Feb;18(2):200-5. doi: 10.2337/diacare.18.2.200.
Emanuel AL, Meijer RI, Woerdeman J, van Raalte DH, Diamant M, Kramer MHH, Serlie MJ, Eringa EC, Serne EH. Effects of a Hypercaloric and Hypocaloric Diet on Insulin-Induced Microvascular Recruitment, Glucose Uptake, and Lipolysis in Healthy Lean Men. Arterioscler Thromb Vasc Biol. 2020 Jul;40(7):1695-1704. doi: 10.1161/ATVBAHA.120.314129. Epub 2020 May 14.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
DC2014DES001
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.