Muscle Insulin Resistance in Aging (Mirage)

NCT ID: NCT02230839

Last Updated: 2025-08-03

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

ACTIVE_NOT_RECRUITING

Clinical Phase

NA

Total Enrollment

200 participants

Study Classification

INTERVENTIONAL

Study Start Date

2014-06-30

Study Completion Date

2025-12-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The purpose of this study is to provide information regarding potential factors underlying metabolic dysfunction, insulin resistance, and loss of muscle mass in aging muscle.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Study Objectives:

1. To determine the effects of diet-induced weight loss with and without the addition of exercise on mitochondrial biogenesis and energetic capacity, cellular redox state and insulin resistance.
2. To determine the effects of diet-induced weight loss with and without the addition of exercise on intramyocellular lipid profiles.
3. To determine the effects of diet-induced weight loss with and without exercise on skeletal muscle proteins mediating a program of autophagy and either loss or maintenance of muscle mass.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Insulin Resistance Sarcopenia

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

BASIC_SCIENCE

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Exercise training protocol

Group Type EXPERIMENTAL

Exercise

Intervention Type BEHAVIORAL

Participants will complete a progressive 6-month exercise training program, 4-5 days per week, 45 min per session (180 min per week), consisting mostly of walking (both outside and on an indoor treadmill) but with the option to include stationary cycling, elliptical and rowing machines, similar to what we have utilized previously to elicit significant improvements in insulin sensitivity in both middle-age and older adults (52-55). Beginning at week 8, these subjects will also perform 2 non-consecutive resistance exercise sessions per week, 30 min per session, focused on major muscle groups using resistance machines (total days of exercise will still be 4 to 5).

Energy restriction-induced weight loss

Group Type EXPERIMENTAL

Energy Restriction-Induced Weight Loss

Intervention Type BEHAVIORAL

The goal of the weight loss intervention will be to produce a weight loss of 10% body weight. A reduction of 500-1000 kcal/day - based on baseline weight -and low fat (\<30% of calories from fat) diet will be used as part of the weight loss intervention.

Health Education

Group Type NO_INTERVENTION

No interventions assigned to this group

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Exercise

Participants will complete a progressive 6-month exercise training program, 4-5 days per week, 45 min per session (180 min per week), consisting mostly of walking (both outside and on an indoor treadmill) but with the option to include stationary cycling, elliptical and rowing machines, similar to what we have utilized previously to elicit significant improvements in insulin sensitivity in both middle-age and older adults (52-55). Beginning at week 8, these subjects will also perform 2 non-consecutive resistance exercise sessions per week, 30 min per session, focused on major muscle groups using resistance machines (total days of exercise will still be 4 to 5).

Intervention Type BEHAVIORAL

Energy Restriction-Induced Weight Loss

The goal of the weight loss intervention will be to produce a weight loss of 10% body weight. A reduction of 500-1000 kcal/day - based on baseline weight -and low fat (\<30% of calories from fat) diet will be used as part of the weight loss intervention.

Intervention Type BEHAVIORAL

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* 65-80 years of age
* Stable weight (No Gain/Loss of \>10 lbs in 6 months)
* Sedentary (≤ 1 continuous exercise/week)
* Non-smoker
* BMI ≥ 30 kg/m2
* Resting Blood Pressure ≤ 150 millimeters of mercury systolic and ≤ 95 millimeters of mercury diastolic
* Note from Primary care physician/Cardiologist for exercise clearance if positive stress test symptoms were observed from exercise test
* Must be willing to washout for 14 days from all diabetes medication and independent in self blood glucose monitoring during the washout periods (those with diabetes only)

Exclusion Criteria

* Clinically significant cardiovascular disease including history of myocardial infarction, within the past year
* Peripheral Vascular Disease
* Hepatic, renal, muscular/neuromuscular, or active hematologic/oncologic disease
* Clinically diminished pulse
* Presence of bruits in lower extremities
* Previous history of pulmonary emboli
* Peripheral Neuropathy
Minimum Eligible Age

65 Years

Maximum Eligible Age

80 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

AdventHealth Translational Research Institute

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Bret Goodpaster, PhD

Role: PRINCIPAL_INVESTIGATOR

Translational Research Institute for Metabolism and Diabetes

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Translational Research Institute for Metabolism and Diabetes

Orlando, Florida, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

References

Explore related publications, articles, or registry entries linked to this study.

Evans W. Functional and metabolic consequences of sarcopenia. J Nutr. 1997 May;127(5 Suppl):998S-1003S. doi: 10.1093/jn/127.5.998S.

Reference Type BACKGROUND
PMID: 9164283 (View on PubMed)

Evans WJ, Campbell WW. Sarcopenia and age-related changes in body composition and functional capacity. J Nutr. 1993 Feb;123(2 Suppl):465-8. doi: 10.1093/jn/123.suppl_2.465.

Reference Type BACKGROUND
PMID: 8429405 (View on PubMed)

Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr. 1997 May;127(5 Suppl):990S-991S. doi: 10.1093/jn/127.5.990S.

Reference Type BACKGROUND
PMID: 9164280 (View on PubMed)

Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM. Prevalence of overweight and obesity in the United States, 1999-2004. JAMA. 2006 Apr 5;295(13):1549-55. doi: 10.1001/jama.295.13.1549.

Reference Type BACKGROUND
PMID: 16595758 (View on PubMed)

Villareal DT, Apovian CM, Kushner RF, Klein S; American Society for Nutrition; NAASO, The Obesity Society. Obesity in older adults: technical review and position statement of the American Society for Nutrition and NAASO, The Obesity Society. Am J Clin Nutr. 2005 Nov;82(5):923-34. doi: 10.1093/ajcn/82.5.923.

Reference Type BACKGROUND
PMID: 16280421 (View on PubMed)

Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB, Stamm E, Newman AB. Attenuation of skeletal muscle and strength in the elderly: The Health ABC Study. J Appl Physiol (1985). 2001 Jun;90(6):2157-65. doi: 10.1152/jappl.2001.90.6.2157.

Reference Type BACKGROUND
PMID: 11356778 (View on PubMed)

Park SW, Goodpaster BH, Lee JS, Kuller LH, Boudreau R, de Rekeneire N, Harris TB, Kritchevsky S, Tylavsky FA, Nevitt M, Cho YW, Newman AB; Health, Aging, and Body Composition Study. Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care. 2009 Nov;32(11):1993-7. doi: 10.2337/dc09-0264. Epub 2009 Jun 23.

Reference Type BACKGROUND
PMID: 19549734 (View on PubMed)

Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, Shulman GI. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003 May 16;300(5622):1140-2. doi: 10.1126/science.1082889.

Reference Type BACKGROUND
PMID: 12750520 (View on PubMed)

Amati F, Dube JJ, Coen PM, Stefanovic-Racic M, Toledo FG, Goodpaster BH. Physical inactivity and obesity underlie the insulin resistance of aging. Diabetes Care. 2009 Aug;32(8):1547-9. doi: 10.2337/dc09-0267. Epub 2009 Apr 28.

Reference Type BACKGROUND
PMID: 19401446 (View on PubMed)

Kelley DE, Goodpaster B, Wing RR, Simoneau JA. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol. 1999 Dec;277(6):E1130-41. doi: 10.1152/ajpendo.1999.277.6.E1130.

Reference Type BACKGROUND
PMID: 10600804 (View on PubMed)

Kelley DE, Mintun MA, Watkins SC, Simoneau JA, Jadali F, Fredrickson A, Beattie J, Theriault R. The effect of non-insulin-dependent diabetes mellitus and obesity on glucose transport and phosphorylation in skeletal muscle. J Clin Invest. 1996 Jun 15;97(12):2705-13. doi: 10.1172/JCI118724.

Reference Type BACKGROUND
PMID: 8675680 (View on PubMed)

Lillioja S, Bogardus C. Obesity and insulin resistance: lessons learned from the Pima Indians. Diabetes Metab Rev. 1988 Aug;4(5):517-40. doi: 10.1002/dmr.5610040508.

Reference Type BACKGROUND
PMID: 3061759 (View on PubMed)

Devlin JT. Effects of exercise on insulin sensitivity in humans. Diabetes Care. 1992 Nov;15(11):1690-3. doi: 10.2337/diacare.15.11.1690.

Reference Type BACKGROUND
PMID: 1468302 (View on PubMed)

Bogardus C. Insulin resistance in the pathogenesis of NIDDM in Pima Indians. Diabetes Care. 1993 Jan;16(1):228-31. doi: 10.2337/diacare.16.1.228.

Reference Type BACKGROUND
PMID: 8422780 (View on PubMed)

Haffner SM, Valdez RA, Hazuda HP, Mitchell BD, Morales PA, Stern MP. Prospective analysis of the insulin-resistance syndrome (syndrome X). Diabetes. 1992 Jun;41(6):715-22. doi: 10.2337/diab.41.6.715.

Reference Type BACKGROUND
PMID: 1587398 (View on PubMed)

Rizza RA, Mandarino LJ, Gerich JE. Mechanism and significance of insulin resistance in non-insulin-dependent diabetes mellitus. Diabetes. 1981 Dec;30(12):990-5. doi: 10.2337/diab.30.12.990.

Reference Type BACKGROUND
PMID: 7030834 (View on PubMed)

Chavez JA, Knotts TA, Wang LP, Li G, Dobrowsky RT, Florant GL, Summers SA. A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem. 2003 Mar 21;278(12):10297-303. doi: 10.1074/jbc.M212307200. Epub 2003 Jan 13.

Reference Type BACKGROUND
PMID: 12525490 (View on PubMed)

Stratford S, Hoehn KL, Liu F, Summers SA. Regulation of insulin action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B. J Biol Chem. 2004 Aug 27;279(35):36608-15. doi: 10.1074/jbc.M406499200. Epub 2004 Jun 25.

Reference Type BACKGROUND
PMID: 15220355 (View on PubMed)

Turinsky J, O'Sullivan DM, Bayly BP. 1,2-Diacylglycerol and ceramide levels in insulin-resistant tissues of the rat in vivo. J Biol Chem. 1990 Oct 5;265(28):16880-5.

Reference Type BACKGROUND
PMID: 2211599 (View on PubMed)

Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM, Liu Y, Narra K, Hoehn KL, Knotts TA, Siesky A, Nelson DH, Karathanasis SK, Fontenot GK, Birnbaum MJ, Summers SA. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab. 2007 Mar;5(3):167-79. doi: 10.1016/j.cmet.2007.01.002.

Reference Type BACKGROUND
PMID: 17339025 (View on PubMed)

Adams JM 2nd, Pratipanawatr T, Berria R, Wang E, DeFronzo RA, Sullards MC, Mandarino LJ. Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes. 2004 Jan;53(1):25-31. doi: 10.2337/diabetes.53.1.25.

Reference Type BACKGROUND
PMID: 14693694 (View on PubMed)

Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes. 2002 Jul;51(7):2005-11. doi: 10.2337/diabetes.51.7.2005.

Reference Type BACKGROUND
PMID: 12086926 (View on PubMed)

Bruce CR, Thrush AB, Mertz VA, Bezaire V, Chabowski A, Heigenhauser GJ, Dyck DJ. Endurance training in obese humans improves glucose tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content. Am J Physiol Endocrinol Metab. 2006 Jul;291(1):E99-E107. doi: 10.1152/ajpendo.00587.2005. Epub 2006 Feb 7.

Reference Type BACKGROUND
PMID: 16464906 (View on PubMed)

Bergman BC, Perreault L, Hunerdosse DM, Koehler MC, Samek AM, Eckel RH. Increased intramuscular lipid synthesis and low saturation relate to insulin sensitivity in endurance-trained athletes. J Appl Physiol (1985). 2010 May;108(5):1134-41. doi: 10.1152/japplphysiol.00684.2009. Epub 2010 Mar 18.

Reference Type BACKGROUND
PMID: 20299618 (View on PubMed)

Perreault L, Bergman BC, Hunerdosse DM, Playdon MC, Eckel RH. Inflexibility in intramuscular triglyceride fractional synthesis distinguishes prediabetes from obesity in humans. Obesity (Silver Spring). 2010 Aug;18(8):1524-31. doi: 10.1038/oby.2009.454. Epub 2009 Dec 24.

Reference Type BACKGROUND
PMID: 20035285 (View on PubMed)

Bergman BC, Perreault L, Hunerdosse DM, Koehler MC, Samek AM, Eckel RH. Intramuscular lipid metabolism in the insulin resistance of smoking. Diabetes. 2009 Oct;58(10):2220-7. doi: 10.2337/db09-0481. Epub 2009 Jul 6.

Reference Type BACKGROUND
PMID: 19581421 (View on PubMed)

Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science. 2005 Jan 21;307(5708):384-7. doi: 10.1126/science.1104343.

Reference Type BACKGROUND
PMID: 15662004 (View on PubMed)

Holloszy JO. "Deficiency" of mitochondria in muscle does not cause insulin resistance. Diabetes. 2013 Apr;62(4):1036-40. doi: 10.2337/db12-1107.

Reference Type BACKGROUND
PMID: 23520283 (View on PubMed)

Li J, Romestaing C, Han X, Li Y, Hao X, Wu Y, Sun C, Liu X, Jefferson LS, Xiong J, Lanoue KF, Chang Z, Lynch CJ, Wang H, Shi Y. Cardiolipin remodeling by ALCAT1 links oxidative stress and mitochondrial dysfunction to obesity. Cell Metab. 2010 Aug 4;12(2):154-65. doi: 10.1016/j.cmet.2010.07.003.

Reference Type BACKGROUND
PMID: 20674860 (View on PubMed)

Lee HY, Choi CS, Birkenfeld AL, Alves TC, Jornayvaz FR, Jurczak MJ, Zhang D, Woo DK, Shadel GS, Ladiges W, Rabinovitch PS, Santos JH, Petersen KF, Samuel VT, Shulman GI. Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance. Cell Metab. 2010 Dec 1;12(6):668-74. doi: 10.1016/j.cmet.2010.11.004.

Reference Type BACKGROUND
PMID: 21109199 (View on PubMed)

Reznick RM, Zong H, Li J, Morino K, Moore IK, Yu HJ, Liu ZX, Dong J, Mustard KJ, Hawley SA, Befroy D, Pypaert M, Hardie DG, Young LH, Shulman GI. Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab. 2007 Feb;5(2):151-6. doi: 10.1016/j.cmet.2007.01.008.

Reference Type BACKGROUND
PMID: 17276357 (View on PubMed)

Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M. Autophagy is required to maintain muscle mass. Cell Metab. 2009 Dec;10(6):507-15. doi: 10.1016/j.cmet.2009.10.008.

Reference Type BACKGROUND
PMID: 19945408 (View on PubMed)

Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT. Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20405-10. doi: 10.1073/pnas.0911570106. Epub 2009 Nov 16.

Reference Type BACKGROUND
PMID: 19918075 (View on PubMed)

Romanello V, Guadagnin E, Gomes L, Roder I, Sandri C, Petersen Y, Milan G, Masiero E, Del Piccolo P, Foretz M, Scorrano L, Rudolf R, Sandri M. Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J. 2010 May 19;29(10):1774-85. doi: 10.1038/emboj.2010.60. Epub 2010 Apr 16.

Reference Type BACKGROUND
PMID: 20400940 (View on PubMed)

Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA, Smith SR, Ravussin E; CALERIE Pennington Team. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 2007 Mar;4(3):e76. doi: 10.1371/journal.pmed.0040076.

Reference Type BACKGROUND
PMID: 17341128 (View on PubMed)

Fontana L, Villareal DT, Weiss EP, Racette SB, Steger-May K, Klein S, Holloszy JO; Washington University School of Medicine CALERIE Group. Calorie restriction or exercise: effects on coronary heart disease risk factors. A randomized, controlled trial. Am J Physiol Endocrinol Metab. 2007 Jul;293(1):E197-202. doi: 10.1152/ajpendo.00102.2007. Epub 2007 Mar 27.

Reference Type BACKGROUND
PMID: 17389710 (View on PubMed)

Heilbronn LK, de Jonge L, Frisard MI, DeLany JP, Larson-Meyer DE, Rood J, Nguyen T, Martin CK, Volaufova J, Most MM, Greenway FL, Smith SR, Deutsch WA, Williamson DA, Ravussin E; Pennington CALERIE Team. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA. 2006 Apr 5;295(13):1539-48. doi: 10.1001/jama.295.13.1539.

Reference Type BACKGROUND
PMID: 16595757 (View on PubMed)

Santanasto AJ, Glynn NW, Newman MA, Taylor CA, Brooks MM, Goodpaster BH, Newman AB. Impact of weight loss on physical function with changes in strength, muscle mass, and muscle fat infiltration in overweight to moderately obese older adults: a randomized clinical trial. J Obes. 2011;2011:516576. doi: 10.1155/2011/516576. Epub 2010 Oct 10.

Reference Type BACKGROUND
PMID: 20953373 (View on PubMed)

Messier SP, Loeser RF, Mitchell MN, Valle G, Morgan TP, Rejeski WJ, Ettinger WH. Exercise and weight loss in obese older adults with knee osteoarthritis: a preliminary study. J Am Geriatr Soc. 2000 Sep;48(9):1062-72. doi: 10.1111/j.1532-5415.2000.tb04781.x.

Reference Type BACKGROUND
PMID: 10983905 (View on PubMed)

Weiss EP, Racette SB, Villareal DT, Fontana L, Steger-May K, Schechtman KB, Klein S, Ehsani AA, Holloszy JO; Washington University School of Medicine CALERIE Group. Lower extremity muscle size and strength and aerobic capacity decrease with caloric restriction but not with exercise-induced weight loss. J Appl Physiol (1985). 2007 Feb;102(2):634-40. doi: 10.1152/japplphysiol.00853.2006. Epub 2006 Nov 9.

Reference Type BACKGROUND
PMID: 17095635 (View on PubMed)

Goodpaster BH, He J, Watkins S, Kelley DE. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab. 2001 Dec;86(12):5755-61. doi: 10.1210/jcem.86.12.8075.

Reference Type BACKGROUND
PMID: 11739435 (View on PubMed)

Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002 Oct;51(10):2944-50. doi: 10.2337/diabetes.51.10.2944.

Reference Type BACKGROUND
PMID: 12351431 (View on PubMed)

Ritov VB, Menshikova EV, Kelley DE. Analysis of cardiolipin in human muscle biopsy. J Chromatogr B Analyt Technol Biomed Life Sci. 2006 Feb 2;831(1-2):63-71. doi: 10.1016/j.jchromb.2005.11.031. Epub 2005 Dec 6.

Reference Type BACKGROUND
PMID: 16337440 (View on PubMed)

Ritov VB, Menshikova EV, Kelley DE. High-performance liquid chromatography-based methods of enzymatic analysis: electron transport chain activity in mitochondria from human skeletal muscle. Anal Biochem. 2004 Oct 1;333(1):27-38. doi: 10.1016/j.ab.2004.05.014.

Reference Type BACKGROUND
PMID: 15351277 (View on PubMed)

Dube JJ, Amati F, Stefanovic-Racic M, Toledo FG, Sauers SE, Goodpaster BH. Exercise-induced alterations in intramyocellular lipids and insulin resistance: the athlete's paradox revisited. Am J Physiol Endocrinol Metab. 2008 May;294(5):E882-8. doi: 10.1152/ajpendo.00769.2007. Epub 2008 Mar 4.

Reference Type BACKGROUND
PMID: 18319352 (View on PubMed)

Goodpaster BH, Katsiaras A, Kelley DE. Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes. 2003 Sep;52(9):2191-7. doi: 10.2337/diabetes.52.9.2191.

Reference Type BACKGROUND
PMID: 12941756 (View on PubMed)

Pruchnic R, Katsiaras A, He J, Kelley DE, Winters C, Goodpaster BH. Exercise training increases intramyocellular lipid and oxidative capacity in older adults. Am J Physiol Endocrinol Metab. 2004 Nov;287(5):E857-62. doi: 10.1152/ajpendo.00459.2003. Epub 2004 Jun 29.

Reference Type BACKGROUND
PMID: 15226098 (View on PubMed)

Dube JJ, Amati F, Toledo FG, Stefanovic-Racic M, Rossi A, Coen P, Goodpaster BH. Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide. Diabetologia. 2011 May;54(5):1147-56. doi: 10.1007/s00125-011-2065-0. Epub 2011 Feb 17.

Reference Type BACKGROUND
PMID: 21327867 (View on PubMed)

Goodpaster BH, Chomentowski P, Ward BK, Rossi A, Glynn NW, Delmonico MJ, Kritchevsky SB, Pahor M, Newman AB. Effects of physical activity on strength and skeletal muscle fat infiltration in older adults: a randomized controlled trial. J Appl Physiol (1985). 2008 Nov;105(5):1498-503. doi: 10.1152/japplphysiol.90425.2008. Epub 2008 Sep 25.

Reference Type BACKGROUND
PMID: 18818386 (View on PubMed)

LIFE Study Investigators; Pahor M, Blair SN, Espeland M, Fielding R, Gill TM, Guralnik JM, Hadley EC, King AC, Kritchevsky SB, Maraldi C, Miller ME, Newman AB, Rejeski WJ, Romashkan S, Studenski S. Effects of a physical activity intervention on measures of physical performance: Results of the lifestyle interventions and independence for Elders Pilot (LIFE-P) study. J Gerontol A Biol Sci Med Sci. 2006 Nov;61(11):1157-65. doi: 10.1093/gerona/61.11.1157.

Reference Type BACKGROUND
PMID: 17167156 (View on PubMed)

Goodpaster BH, Theriault R, Watkins SC, Kelley DE. Intramuscular lipid content is increased in obesity and decreased by weight loss. Metabolism. 2000 Apr;49(4):467-72. doi: 10.1016/s0026-0495(00)80010-4.

Reference Type BACKGROUND
PMID: 10778870 (View on PubMed)

Gnaiger E. Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology. Int J Biochem Cell Biol. 2009 Oct;41(10):1837-45. doi: 10.1016/j.biocel.2009.03.013. Epub 2009 Apr 2.

Reference Type BACKGROUND
PMID: 19467914 (View on PubMed)

Hutter E, Unterluggauer H, Garedew A, Jansen-Durr P, Gnaiger E. High-resolution respirometry--a modern tool in aging research. Exp Gerontol. 2006 Jan;41(1):103-9. doi: 10.1016/j.exger.2005.09.011. Epub 2005 Nov 23.

Reference Type BACKGROUND
PMID: 16309877 (View on PubMed)

Goodpaster BH, Kelley DE, Wing RR, Meier A, Thaete FL. Effects of weight loss on regional fat distribution and insulin sensitivity in obesity. Diabetes. 1999 Apr;48(4):839-47. doi: 10.2337/diabetes.48.4.839.

Reference Type BACKGROUND
PMID: 10102702 (View on PubMed)

Goodpaster BH, Thaete FL, Kelley DE. Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus. Am J Clin Nutr. 2000 Apr;71(4):885-92. doi: 10.1093/ajcn/71.4.885.

Reference Type BACKGROUND
PMID: 10731493 (View on PubMed)

Toledo FG, Menshikova EV, Ritov VB, Azuma K, Radikova Z, DeLany J, Kelley DE. Effects of physical activity and weight loss on skeletal muscle mitochondria and relationship with glucose control in type 2 diabetes. Diabetes. 2007 Aug;56(8):2142-7. doi: 10.2337/db07-0141. Epub 2007 May 29.

Reference Type BACKGROUND
PMID: 17536063 (View on PubMed)

Toledo FG, Watkins S, Kelley DE. Changes induced by physical activity and weight loss in the morphology of intermyofibrillar mitochondria in obese men and women. J Clin Endocrinol Metab. 2006 Aug;91(8):3224-7. doi: 10.1210/jc.2006-0002. Epub 2006 May 9.

Reference Type BACKGROUND
PMID: 16684829 (View on PubMed)

Bielawski J, Szulc ZM, Hannun YA, Bielawska A. Simultaneous quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods. 2006 Jun;39(2):82-91. doi: 10.1016/j.ymeth.2006.05.004.

Reference Type BACKGROUND
PMID: 16828308 (View on PubMed)

Sun D, Cree MG, Wolfe RR. Quantification of the concentration and 13C tracer enrichment of long-chain fatty acyl-coenzyme A in muscle by liquid chromatography/mass spectrometry. Anal Biochem. 2006 Feb 1;349(1):87-95. doi: 10.1016/j.ab.2005.10.006. Epub 2005 Oct 26.

Reference Type BACKGROUND
PMID: 16307720 (View on PubMed)

Jubrias SA, Crowther GJ, Shankland EG, Gronka RK, Conley KE. Acidosis inhibits oxidative phosphorylation in contracting human skeletal muscle in vivo. J Physiol. 2003 Dec 1;553(Pt 2):589-99. doi: 10.1113/jphysiol.2003.045872. Epub 2003 Sep 26.

Reference Type BACKGROUND
PMID: 14514869 (View on PubMed)

Blei ML, Conley KE, Kushmerick MJ. Separate measures of ATP utilization and recovery in human skeletal muscle. J Physiol. 1993 Jun;465:203-22. doi: 10.1113/jphysiol.1993.sp019673.

Reference Type BACKGROUND
PMID: 8024651 (View on PubMed)

Related Links

Access external resources that provide additional context or updates about the study.

http://www.tri-md.org

Florida Hospital Translational Research Institute for Metabolism and Diabetes

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

TRIMDFH 500423

Identifier Type: -

Identifier Source: org_study_id

NCT01808924

Identifier Type: -

Identifier Source: nct_alias

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Training Effects on Fuel Metabolism
NCT02150889 ACTIVE_NOT_RECRUITING NA